Open Access
Issue
Math. Model. Nat. Phenom.
Volume 17, 2022
Article Number 4
Number of page(s) 15
DOI https://doi.org/10.1051/mmnp/2022006
Published online 17 February 2022
  1. N. Akhmediev, A. Ankiewicz and M. Taki, Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373 (2009) 675–678. [CrossRef] [Google Scholar]
  2. N. Akhmediev and V.I. Korneev, Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69 (1986) 1089–1093. [CrossRef] [Google Scholar]
  3. Y.V. Bludov, V.V. Konotop and N. Akhmediev, Matter rogue waves. Phys. Rev. A 80 (2009) 033610. [CrossRef] [Google Scholar]
  4. A. Degasperis and S. Lombardo, Multicomponent integrable wave equations: I. Darboux-dressing transformation. J. Phys. A: Math. Theor. 40 (2007) 961–977. [CrossRef] [Google Scholar]
  5. A. Degasperis and S. Lombardo, Multicomponent integrable wave equations: II. Soliton solutions. J. Phys. A: Math. Theor. 42 (2009) 2467–2480. [Google Scholar]
  6. K. Dysthe, H.E. Krogstad and P. Müller, Oceanic rogue waves. Annu. Rev. Fluid Mech. 40 (2008) 287–310. [CrossRef] [Google Scholar]
  7. H.A. Erbay, Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg-de Vries equation. Phys. Scr. 58 (1998) 9–14. [CrossRef] [Google Scholar]
  8. X.G. Geng, Y.Y. Zhai and H.H. Dai, Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy. Adv. Math. 263 (2014) 123–153. [CrossRef] [MathSciNet] [Google Scholar]
  9. B.L. Guo, L.M. Ling, Q.P. Liu and C.F. Wu, Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85 (2012) 026607. [CrossRef] [PubMed] [Google Scholar]
  10. J.S. He, L.H. Wang, L.J. Li, K. Porsezian and R. Erdélyi, Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation. Phys. Rev. E 89 (2014) 062917. [CrossRef] [PubMed] [Google Scholar]
  11. A.H. Khater, O.H. El-Kalaawy and D.K. Callebaut, Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma. Phys. Scr. 58 (1988) 545. [CrossRef] [Google Scholar]
  12. B. Kibler, J. Fatome, C. Finot, G. Millot and F. Dias, The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6 (2010) 790. [CrossRef] [Google Scholar]
  13. E.A. Kuznetsov, Solitons in a parametrically unstable plasma. Akad. Nauk SSSR Dokl. 236 (1977) 575–577. [Google Scholar]
  14. H. Leblond, P. Grelu and D. Mihalache, Models for supercontinuum generation beyond the slowly-varying-envelope approximation. Phys. Rev. A 90 (2014) 053816. [CrossRef] [Google Scholar]
  15. L.M. Ling, B.L. Guo and L.C. Zhao, High-order rogue waves in vector nonlinear Schrödinger equations. Phys. Rev. E 89 (2014) 041201. [CrossRef] [PubMed] [Google Scholar]
  16. K.E. Lonngren, Ion acoustic soliton experiments in a plasma. Opt. Quant. Electron. 30 (1998) 615. [CrossRef] [Google Scholar]
  17. Y. Lou, Y. Zhang and R.S. Ye, Modulation instability, higher-order rogue waves and dynamics of the Gerdjikov-Ivanov equation. Wave Motion 106 (2021) 102795. [CrossRef] [Google Scholar]
  18. Y. Lou, Y. Zhang, R.S. Ye and M. Li, Solitons and dynamics for the integrable nonlocal pair-transition-coupled nonlinear Schrödinger equation. Appl. Math. Comput. 409 (2021) 126417. [Google Scholar]
  19. W.X. Ma, Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132 (2018) 45–54. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Mu, Z.Y. Qin and R. Grimshaw, Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation. SIAM.J. Appl. Math. 75 (2015) 1–20. [CrossRef] [MathSciNet] [Google Scholar]
  21. N.V. Priya, M. Senthilvelan and M. Lakshmanan, Akhmediev breathers, Ma solitons, and general breathers from rogue waves: a case study in the Manakov system. Phys. Rev. E 88 (2013) 022918. [CrossRef] [PubMed] [Google Scholar]
  22. D.R. Solli, C. Ropers, P. Koonath et al., Optical rogue waves. Nature 450 (2007) 1054–1057. [CrossRef] [PubMed] [Google Scholar]
  23. X. Wang, Y. Li and Y. Chen, Generalized Darboux transformation and localized waves in coupled Hirota equations. Wave Motion 51 (2014) 1149–1160. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Wang, Y. Zhang, X.T. Chen and R.S. Ye, The rational and semi-rational solutions to the Hirota-Maccari system. Nonlinear Dyn. 100 (2020) 2767–2778. [CrossRef] [Google Scholar]
  25. T. Xu and G.L. He, Higher-order interactional solutions and rogue wave pairs for the coupled Lakshmanan-Porsezian-Daniel equations. Nonlinear Dyn. 98 (2019) 1731–1744. [CrossRef] [Google Scholar]
  26. T. Xu and G.L. He, The coupled derivative nonlinear Schrödinger equation: conservation laws, modulation instability and semirational solutions. Nonlinear Dyn. 100 (2020) 2823–2837. [CrossRef] [Google Scholar]
  27. Z.Y. Yan, Vector financial rogue waves. Phys. Lett. A 375 (2011) 4274–4279. [CrossRef] [Google Scholar]
  28. R.S. Ye, Y. Zhang, Q.Y. Zhang and X.T. Chen, Vector rational and semi-rational rogue wave solutions in the coupled complex modified Korteweg-de Vries equations. Wave Motion 92 (2019) 102425. [Google Scholar]
  29. Y.Y. Zhai, T. Ji and X.G. Geng, Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber. Appl. Math. Comput. 411 (2021) 126551. [Google Scholar]
  30. Y. Zhang, R.S. Ye and W.X. Ma, Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg-de Vries equations. Math. Meth. Appl. Sci. 43 (2019) 613–627. [Google Scholar]
  31. Y. Zhang, J.W. Yang, K.W. Chow et al., Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation. Nonlinear Anal. RWA 33 (2017) 237–252. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.