Math. Model. Nat. Phenom.
Volume 17, 2022
Coronavirus: Scientific insights and societal aspects
Article Number 9
Number of page(s) 20
Published online 20 May 2022
  1. S. Anita, M. Banerjee, S. Ghosh and V. Volpert, Vaccination in a two-group epidemic model. Appl. Math. Lett. 119 (2021) 107197. [CrossRef] [Google Scholar]
  2. F. Balabdaoui and D. Mohr, Age-stratified discrete compartment model of the COVID-19 epidemic with application to Switzerland. Sci. Rep. 10 (2020) 1–12. [CrossRef] [Google Scholar]
  3. L. Berec, M. Smid, L. Pribylova, O. Majek, T. Pavlik, J. Jarkovsky, M. Zajicek, J. Weiner, T. Barusova and J. Trnka, Real-life protection provided by vaccination, booster doses and previous infection against covid-19 infection, hospitalisation or death over time in the Czech Republic: a whole country retrospective view. medRxiv (2021). [Google Scholar]
  4. D. Bichara and A. Iggidr, Multi-patch and multi-group epidemic models: a new framework. J. Math. Biol. 77 (2018) 107–134. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. P. Bosetti, C.T. Kiem, A. Andronico, J. Paireau, C. Emergen and S. Cauchemez, Complément d’Analyse. Impact du sous- variant BA.2 et du relâchement des mesures de contrôle en France métropolitaine (2022). [Google Scholar]
  6. A. Bouchnita, S.J. Fox, J.L.H.-D. Michael Lachmann, G. Gibson and L.A. Meyers, COVID-19 Scenario Projections: The Emergence of Omicron in the US - January 2022. The University of Texas CO VID-19 Modeling Consortium (2022). [Google Scholar]
  7. A. Bouchnita and A. Jebrane, A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions. Chaos Solitons Fractals 138 (2020). [Google Scholar]
  8. F. Brauer, C. Castillo-Chavez and Z. Feng, vol. 32 of Mathematical models in epidemiology. Springer (2019). [Google Scholar]
  9. M.C. Chan, K.P. Hui, J. Ho, M.C. Cheung, K.C. Ng, R. Ching, K.L. Lai, T. Kam, H. Gu, K.-Y. Sit et al., SARS-CoV-2 Omicron variant replication in human respiratory tract ex vivo,, (2021). [Google Scholar]
  10. H. Chemaitelly et. al., Duration of mRNA vaccine protection againstSARS-CoV-2 Omicron BA. 1 and BA. 2 subvariants in Qatar. medRxiv (2022). [Google Scholar]
  11. F. Ebrahim, S. Tabal, Y. Lamami, I.M. Alhudiri, S.E. El Meshri, S.M. Al Dwigen, R. Arfa, A. Alboeshi, H.A. Alemam, F. Abuhtna et al., Anti-SARS-CoV-2 IgG antibodies after recovery from COVID-19 or vaccination in Libyan population: comparison of four vaccines. medRxiv (2022). [Google Scholar]
  12. European Centre for Disease Prevention and Control, Seasonal influenza 2018-2019. ECDC. Annual Epidemiological Report for 2018 (2019). [Google Scholar]
  13. S. Ghosh, V. Volpert and M. Banerjee, An epidemic model with time-distributed recovery and death rates. Preprint. [Google Scholar]
  14. M.A. Gilchrist and A. Sasaki, Modeling host-parasite coevolution: a nested approach based on mechanistic models. J. Theor. Biol. 218 (2002) 289–308. [CrossRef] [Google Scholar]
  15. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42 (2000) 599–653. [CrossRef] [MathSciNet] [Google Scholar]
  16. H.S. Hurd and J.B. Kaneene, The application of simulation models and systems analysis in epidemiology: a review. Prevent. Veter. Med. 15 (1993) 81–99. [CrossRef] [Google Scholar]
  17. M.J. Keeling and K.T. Eames, Networks and epidemic models. J. Royal Soc. Interface 2 (2005) 295–307. [CrossRef] [PubMed] [Google Scholar]
  18. C.T. Kelley, Iterative methods for optimization, SIAM (1999). [Google Scholar]
  19. J. Love, L.T. Keegan, F.J. Angulo, J.M. McLaughlin, K.M. Shea, D.L. Swerdlow, M.H. Samore and D.J. Toth, Continued need for non-pharmaceutical interventions after COVID-19 vaccination in long-term-care facilities. Sci. Rep. 11 (2021) 1–5. [CrossRef] [Google Scholar]
  20. J. Marchi, M. Lassig, A.M. Walczak and T. Mora, Antigenic waves of virus-immune coevolution. Proc. Natl. Acad. Sci. 118 (2021), e2103398118. [CrossRef] [PubMed] [Google Scholar]
  21. D.H. May, B. Rubin, S.C. Dalai, K. Patel, S. Shafiani, R. Elyanow, M.T. Noakes, T.M. Snyder and H.S. Robins, Omicron variant partially escapes the T-cell response induced by SARS-CoV-2 vaccines,, (2021). [Google Scholar]
  22. B. Meng, A. Abdullahi, I.A. Ferreira, N. Goonawardane, A. Saito, I. Kimura, D. Yamasoba, P.P. Gerber, S. Fatihi, S. Rathore et al., Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity, Nature (2022) 1–1. [Google Scholar]
  23. B.Y. Reis, I.S. Kohane and K.D. Mandl, An epidemiological network model for disease outbreak detection. PLoS Med. 4 (2007) e210. [CrossRef] [PubMed] [Google Scholar]
  24. R.J. Rockett, A. Arnott, C. Lam, R. Sadsad, V. Timms, K.-A. Gray, J.-S. Eden, S. Chang, M. Gall, J. Draper et al., Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nat. Med. 26 (2020) 1398–1404. [CrossRef] [PubMed] [Google Scholar]
  25. R.P. Sharma, S. Gautam, P. Sharma, R. Singh, H. Sharma, D. Parsoya, F. Deba, N. Bhomia, V.A. Potdar, P.D. Yadav et al., Clinico epidemiological profile of Omicron variant of SARS CoV2 in Rajasthan. medRxiv (2022). [Google Scholar]
  26. S. Sharma, V. Volpert and M. Banerjee, Extended SEIQR type model for COVID-19 epidemic and data analysis. Math. Biosci. Eng. 17 (2020) 7562–7604. [Google Scholar]
  27. J. Viana, C.H. van Dorp, A. Nunes, M.C. Gomes, M. van Boven, M.E. Kretzschmar, M. Veldhoen and G. Rozhnova, Controlling the pandemic during the SARS-CoV-2 vaccination rollout. Nat. Commun. 12 (2021) 1–15. [CrossRef] [Google Scholar]
  28. J. Yu, A.Y. Collier et al., Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. N. Engl. J. Med. (2022). [Google Scholar]
  29. Y. Yuan and J. Bélair, Threshold dynamics in an SEIRS model with latency and temporary immunity. J. Math. Biol. 69 (2014) 875–904. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.