Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 17, 2022
|
|
---|---|---|
Article Number | 44 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/mmnp/2022045 | |
Published online | 23 December 2022 |
- S.I. Abdelsalam and M.M. Bhatti, Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms, Appl. Math. Mech. 41 (2020) 711–724. [CrossRef] [MathSciNet] [Google Scholar]
- S.I. Abdelsalam, J.X. Velasco-Hernandez and A.Z. Zaher, Electromagnetically modulated self-propulsion of swimming sperms via cervical canal. Biomech. Model. Mechanobiol. 20 (2021) 861–878. [CrossRef] [PubMed] [Google Scholar]
- G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi and C. Sangregorio, Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties, J. Magn. Magn. Mater. 311 (2007) 10–16. [CrossRef] [Google Scholar]
- M.M. Bhatti, S.Z. Alamri, R. Ellahi and S.I. Abdelsalam, Intra-uterine particle-fluid motion through a compliant asymmetric tapered channel with heat transfer, J. Thermal Anal. Calorim. 144 (2021) 2259–2267. [CrossRef] [Google Scholar]
- M.M. Bhatti and S.I. Abdelsalam, Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects, Waves Random Complex Media (2021) 1–26. [CrossRef] [Google Scholar]
- H.S. Chahregh and S. Dinarvand, TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system, Int. J. Numer. Methods Heat Fluid Flow 30 (2020) 4775–4796. [CrossRef] [Google Scholar]
- S. Dinarvand, Nodal/saddle stagnation-point boundary layer flow of CuO-Ag/water hybrid nanofluid: a novel hybridity model. Microsyst. Technolog. 25 (2019) 2609–2623. [CrossRef] [Google Scholar]
- R. Ellahi, S.U. Rahman, S. Nadeem and N.S. Akbar, Blood flow of nanofluid through an artery with composite stenosis and permeable walls, Appl. Nanosci. 4 (2014) 919–926. [CrossRef] [Google Scholar]
- T. Hayat, S. Ayub, A. Tanveer and A. Alsaedi, Numerical simulation for Mhd Williamson fluid utilizing modified Darcy’s law. Res. Phys. 10 (2018) 751–759. [Google Scholar]
- J.H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng. 178 (1999) 257–262. [CrossRef] [Google Scholar]
- J.H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput. 135 (2003) 73–79. [MathSciNet] [Google Scholar]
- B. Jabbaripour, N.M. Rostami, S. Dinarvand and I. Pop, Aqueous aluminium-copper hybrid nanofluid flow past a sinusoidal cylinder considering three-dimensional magnetic field and slip boundary condition, Proc. Inst. Mech. Eng. E (2021) 09544089211046434. [Google Scholar]
- M.Y. Malik and T. Salahuddin, Numerical solution of Mhd stagnation point flow of Williamson fluid model over a stretching cylinder, Int. J. Nonlinear Sci. Numer. Simul. 16 (2015) 161–164. [CrossRef] [MathSciNet] [Google Scholar]
- Z.H. Miao, P.Y. Liu, Y.C. Wang, K. Li, D.D. Huang, H.J. Yang, Q.L. Zhao, Z.B. Zha, L. Zhen and C.-Y. Xu, Pegylated tantalum nanoparticles: a metallic photoacoustic contrast agent for multiwavelength imaging of tumors. Small 15 (2019) 1903596. [CrossRef] [Google Scholar]
- G. Mohandas, N. Oskolkov, M.T. Mcmahon, P. Walczak and M. Janowski, Porous tantalum and tantalum oxide nanoparticles for regenerative medicine, Acta Neurobiolog. Exp. (Wars) 74 (2014) 188–196. [Google Scholar]
- N. Moumen, P. Veillet and M.P. Pileni, Controlled preparation of nanosize cobalt ferrite magnetic particles, J. Magn. Magn. Mater. 149 (1995) 67–71. [CrossRef] [Google Scholar]
- S.M. Mousavi, M.N. Rostami, M. Yousefi, S. Dinarvand, I. Pop and M.A. Sheremet, Dual solutions for Casson hybrid nanofluid flow due to a stretching/shrinking sheet: a new combination of theoretical and experimental models, Chin. J. Phys. 71 (2021) 574–588. [CrossRef] [Google Scholar]
- S. Nadeem and S. Akram, Influence of inclined magnetic field on peristaltic flow of a Williamson fluid model in an inclined symmetric or asymmetric channel. Math. Comput. Modell. 52 (2010) 107–119. [CrossRef] [Google Scholar]
- T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann and B.V. Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293 (2005) 483–496. [CrossRef] [Google Scholar]
- A.T. Ngo, P. Bonville and M.P. Pileni, Nanoparticles of CoxFeyDzO4: synthesis and superparamagnetic properties, Eur. Phys. J. B 9 (1999) 583–592. [CrossRef] [Google Scholar]
- A.S. Ponce, E.F. Chagas, R.J. Prado, C.H.M. Fernandes, A.J. Terezo and E. Baggio-Saitovitch, High coercivity induced by mechanical milling in cobalt ferrite powders. J. Magn. Magn. Mater. 344 (2013) 182–187. [CrossRef] [Google Scholar]
- J. Prakash, N. Balaji, E.P. Siva and A.D. Chanrasekaran, Non-linear blood flow analysis on Mhd peristaltic motion of a Williamson fluid in a micro channel. AIP Conf. Proc. 2112 (2019) 020048–10. [CrossRef] [Google Scholar]
- B.M.J. Rana, S.M. Arifuzzaman, S. Islam, E.-S. Reza-Rabbi, A. Al-Mamun, M. Mazumder, K.C. Roy and M.S. Khan, Swimming of microbes in blood flow of nano-bioconvective Williamson fluid, Thermal Sci. Eng. Progr. 25 (2021) 101018. [CrossRef] [Google Scholar]
- M.N. Rashin and J. Hemalatha, Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid, Ultrasonics 54 (2014) 834–840. [CrossRef] [PubMed] [Google Scholar]
- R. Raza, F. Mabood, R. Naz and S.I. Abdelsalam, Thermal transport of radiative Williamson fluid over stretchable curved surface, Therm. Sci. Eng. Progr. 23 (2021) Article 100887. [Google Scholar]
- T. Ren, R. Tran, S. Lee, A. Bandera, M. Herrera, X. Li, S.P. Ong and O.A. Graeve, Morphology control of tantalum carbide nanoparticles through dopant additions, J. Phys. Chem. C 125 (2021) 10665–10675. [CrossRef] [Google Scholar]
- A. Saleem, S. Akhtar and S. Nadeem, Bio-mathematical analysis of electro-osmotically modulated hemodynamic blood flow inside a symmetric and nonsymmetric stenosed artery with joule heating, Int. J. Biomath. 15 (2022) 2150071. [CrossRef] [Google Scholar]
- S.A. Salman, T. Usami, K. Kuroda and M. Okido, Synthesis and characterization of cobalt nanoparticles using hydrazine and citric acid, J. Nanotechnol. 2014 (2014) Article ID 525193, 6 pages. [CrossRef] [Google Scholar]
- J. Schoon, S. Geißler, J. Traeger, A. Luch, J. Tentschert, G. Perino, F. Schulze, G.N. Duda, C. Perka and A. Rakow, Multi- elemental nanoparticle exposure after tantalum component failure in hip arthroplasty: in-depth analysis of a single case, Nanomedicine 13 (2017) 2415–2423. [CrossRef] [PubMed] [Google Scholar]
- K. Subbarayudu, S. Suneetha and P. Bala Anki Reddy, The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge, Propuls. Power Res. 9 (2020) 87–99. [CrossRef] [Google Scholar]
- T.A. Tabish, M.N. Ashiq, M.A. Ullah et al., Biocompatibility of cobalt iron oxide magnetic nanoparticles in male rabbits, Korean J. Chem. Eng. 33 (2016) 2222–2227. [CrossRef] [Google Scholar]
- L.D. Tung, V. Kolesnichenko, D. Caruntu, N.H. Chou, C.J. O’connor and L. Spinu, Magnetic properties of ultrafine cobalt ferrite particles, J. Appi. Phys. 93 (2003) 7486–7488. [CrossRef] [Google Scholar]
- A. Waris, M. Din, A. Ali, S. Afridi, A. Baset, A.U. Khan and M. Ali, Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: a review, Open Life Sci. 16 (2021) 14–30. [CrossRef] [PubMed] [Google Scholar]
- M. Zeisberger, S. Dutz, R. Muller, R. Hergt, N. Matoussevitch and H. Bönnemann, Metallic cobalt nanoparticles for heating applications, J. Magn. Magn. Mater. 311 (2007) 224–227. [CrossRef] [Google Scholar]
- L. Zhang, E. Haddouti, H. Beckert, R. Biehl, S. Pariyar, J.M. Ruwald, X. Li, M. Jaenisch, C. Burger, D.C. Wirtz, K. Kabir and F.A. Schildberg, Investigation of cytotoxicity, oxidative stress, and inflammatory responses of tantalum nanoparticles in Thp-1-derived macrophages. Med. Inflamm. 2020 (2020) ARTICLE ID 3824593. [Google Scholar]
- L. Zhang, M.M. Bhatti, E.E. Michaelides, M. Marin and R. Ellahi, Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field, Eur. Phys. J. Special Topics 231 (2022) 521–533. [CrossRef] [Google Scholar]
- A.M. Zidan, L.B. Mccash, S. Akhtar, A. Saleem, A. Issakhov and S. Nadeem, Entropy generation for the blood flow in an artery with multiple stenosis having a catheter. Alexandr. Eng. J. 60 (2021) 5741–5748. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.