Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 33
Number of page(s) 31
Section Population dynamics and epidemiology
Published online 30 November 2023
  1. D.I Andersson and D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8 (2010) 260–271. [CrossRef] [PubMed] [Google Scholar]
  2. C. Andreu-Vilarroig, J. Ceberio, J.-C. Cortés, F.F. de Vega, J.-I. Hidalgo and R.-J Villanueva, Evolutionary approach to model calibration with uncertainty: an application to breast cancer growth model. Proc. Genet. Evol. Comput. Conf. Companion (2022) 1895–1901. [Google Scholar]
  3. B. Aslam, W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, M.H. Rasool, M.A. Nisar, R.F. Alvi, M.A. Aslam, M.U. Qamar, et al., Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11 (2018) 1645. [CrossRef] [Google Scholar]
  4. S. Banisch, Markov Chain Aggregation for Agent-based Models. Springer (2015). [Google Scholar]
  5. B.G. Bell, F. Schellevis, E. Stobberingh, H. Goossens and M. Pringle, A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 14 (2014) 1–25. [CrossRef] [Google Scholar]
  6. F. Blanquart, S. Lehtinen, M. Lipsitch and C. Fraser, The evolution of antibiotic resistance in a structured host population. J. Roy. Soc. Interface 15 (2018) 20180040. [CrossRef] [PubMed] [Google Scholar]
  7. E. Bonabeau, Agent-based modeling: methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 7280–7287. [CrossRef] [PubMed] [Google Scholar]
  8. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press (2004). [Google Scholar]
  9. F. Brauer, Compartmental models in epidemiology. Math. Epidemiol. 1945 (2008) 19–79. [CrossRef] [Google Scholar]
  10. F. Brauer, Mathematical epidemiology: Past, present, and future. Infect. Dis. Model. 2 (2017) 113–127. [Google Scholar]
  11. L.D. Brown, T.T. Cai and A. DasGupta, Interval estimation for a binomial proportion. Stat. Sci. (2001) 16 101–117. [CrossRef] [Google Scholar]
  12. C. Burgos, J.-C. Cortés, D. Martínez-Rodríguez and R.-J. Villanueva, Computational modeling with uncertainty of frequent users of e-commerce in Spain using an age-group dynamic nonlinear model with varying size population. Adv. Complex Syst. 22 (2019) 1950009. [CrossRef] [Google Scholar]
  13. G. Casella and R.L. Berger, Statistical Inference. Cengage Learning (2021). [Google Scholar]
  14. J. Chastre, Infections due to Acinetobacter baumannii in the ICU, in Seminars in Respiratory and Critical Care Medicine, Vol. 24. Thieme Medical Publishers, Inc., New York (2003) 069–078. [CrossRef] [Google Scholar]
  15. W. Chen, Host innate immune responses to Acinetobacter baumannii infection. Front. Cell. Infect. Microbiol. 10 (2020). [Google Scholar]
  16. C.A. Coello Coello and M.S. Lechuga, MOPSO: a proposal for multiple objective particle swarm Optimization, in Proceedings of the 2002 Congress on Evolutionary Computation CEC’02. IEEE (2002). [Google Scholar]
  17. M.L. Cohen, Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 257 (1992) 1050–1055. [CrossRef] [PubMed] [Google Scholar]
  18. G.J. Da Silva and S. Domingues, Interplay between colistin resistance, virulence and fitness in Acinetobacter baumannii. Antibiotics 6 (2017) 28. [CrossRef] [PubMed] [Google Scholar]
  19. N.G. Davies, S. Flasche, M. Jit and K.E. Atkins, Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat. Ecol. Evol. 3 (2019) 440–449. [CrossRef] [Google Scholar]
  20. T.N. Doan, D.C.M. Kong, C. Marshall, C.M.J. Kirkpatrick and E.S. McBryde, Modeling the impact of interventions against Acinetobacter baumannii transmission in intensive care units. Virulence 7 (2016) 141–152. [CrossRef] [PubMed] [Google Scholar]
  21. G.M. Eliopoulos, L.L. Maragakis and T.M. Perl, Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis. 46 (2008) 1254–1263. [CrossRef] [PubMed] [Google Scholar]
  22. P. Espinal, S. Martí and J. Vila, Effect of biofilm formation on the survival of Acinetobacter Baumannii on dry surfaces. J. Hosp. Infect. 80 (2012) 56–60. [CrossRef] [Google Scholar]
  23. European Center for Disease Prevention and Control (ECDC). Antimicrobial consumption database (ESAC-Net). [Accessed: 25/11/2022]. [Google Scholar]
  24. V. Grimm, U. Berger, D.L. DeAngelis, J.G. Polhill, J. Giske and S.F. Railsback, The odd protocol: a review and first update. Ecol. Model. 221 (2010) 2760–2768. [CrossRef] [Google Scholar]
  25. The Julia Programming Language. [Accessed: 25/11/2022]. [Google Scholar]
  26. J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4. IEEE (1995) 1942–1948. [CrossRef] [Google Scholar]
  27. N. Khemka and C. Jacob, Exploratory toolkit for evolutionary and swarm-based optimization. Math. J. 11 (2008) 376. [Google Scholar]
  28. M.-F. Lin and C.-Y. Lan, Antimicrobial resistance in Acinetobacter baumannii: from bench to bedside. World J. Clin. Cases 2 (2014) 787. [CrossRef] [Google Scholar]
  29. F.D. Lowy, Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest. 111 (2003) 1265–1273. [CrossRef] [PubMed] [Google Scholar]
  30. L.L. Maragakis, E.N. Perencevich and S.E. Cosgrove, Clinical and economic burden of antimicrobial resistance. Expert Rev. Anti-infective Ther. 6 (2008) 751–763. [CrossRef] [PubMed] [Google Scholar]
  31. F. Marini and B. Walczak, Particle swarm optimization (PSO). A tutorial. Chemometrics Intell. Lab. Syst. 149 (2015) 153–165. [CrossRef] [Google Scholar]
  32. D. Molina, A. LaTorre and F. Herrera, An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions. Cogn. Comput. 10 (2018) 517–544. [CrossRef] [Google Scholar]
  33. J.A. Nelder and R. Mead, A simplex method for function minimization. Comput. J. 7 (1965) 308–313. [Google Scholar]
  34. J. O’Neill, Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 1 (2014) [Accessed: 25/11/2022]. [Google Scholar]
  35. L. Opatowski, D. Guillemot, P.-Y. Boëlle and L. Temime, Contribution of mathematical modeling to the fight against bacterial antibiotic resistance. Curr. Opin. Infect. Dis. 24 (2011) 279–287. [CrossRef] [PubMed] [Google Scholar]
  36. Puerta de Hierro Health Research Institute – Segovia de Arana. Prevalence Study of Nosocomial Diseases in Spain (EPINE). [Accessed: 25/11/2022]. [Google Scholar]
  37. Python. [Accessed: 25/11/2022]. [Google Scholar]
  38. P. Renard, A. Alcolea and D. Ginsbourger, Stochastic versus deterministic approaches, in Environmental Modelling. John Wiley & Sons, Ltd (2013) 133–149. [CrossRef] [Google Scholar]
  39. I. Roca, M. Akova, F. Baquero, J. Carlet, M. Cavaleri, S. Coenen, J. Cohen, D. Findlay, I. Gyssens, O.E. Heure, et al., The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 6 (2015) 22–29. [CrossRef] [Google Scholar]
  40. J. Rodríguez-Baño, J.M. Cisneros, F. Fernández-Cuenca, A. Ribera, J. Vila, A. Pascual, L. Martínez-Martínez, G. Bou, J. Pachón, Grupo de Estudio de Infección Hospitalaria, et al., Clinical features and epidemiology of acinetobacter baumannii colonization and infection in Spanish hospitals. Infect. Control Hosp. Epidemiol. 25 (2004) 819–824. [CrossRef] [PubMed] [Google Scholar]
  41. M. Sassone-Corsi and M. Raffatellu, No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J. Immunol. 194 (2015) 4081–4087. [CrossRef] [PubMed] [Google Scholar]
  42. T.T. Soong, Random Differential Equations in Science and Engineering (1973). [Google Scholar]
  43. Spanish Government. Instituto Nacional de Estadística (INE), [Accessed: 25/11/2022]. [Google Scholar]
  44. Spanish Ministry of Health, Statistical Portal. Management Intelligence Area. [Accessed: 25/11/2022]. [Google Scholar]
  45. M. Sundqvist, Reversibility of antibiotic resistance. Upsala J. Med. Sci. 119 (2014) 142–148. [CrossRef] [PubMed] [Google Scholar]
  46. M. Sundqvist, P. Geli, D.I. Andersson, M. Sjölund-Karlsson, A. Runehagen, H. Cars, K. Abelson-Storby, O. Cars and G. Kahlmeter, Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. J. Antimicrob. Chemother. 65 (2010) 350–360. [CrossRef] [PubMed] [Google Scholar]
  47. R.H. Sunenshine, M.-O. Wright, L.L. Maragakis, A.D. Harris, X. Song, J. Hebden, S.E. Cosgrove, A. Anderson, J. Carnell, D.B. Jernigan, et al., Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis. 13 (2007) 97. [CrossRef] [PubMed] [Google Scholar]
  48. F.C. Tenover, Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 119 (2006) S3–S10. [CrossRef] [Google Scholar]
  49. K.A. Thom, C. Rock, S.S. Jackson, J.K. Johnson, A. Srinivasan, L. Magder, M.-C. Roghmann, R.A. Bonomo and A.D. Harris, Factors leading to transmission risk of Acinetobacter baumannii. Crit. Care Med. 45 (2017) e633. [CrossRef] [PubMed] [Google Scholar]
  50. Valencian Government, Microbiological Surveillance Network of the Valencian Community (REDMIVA). [Accessed: 25/11/2022]. [Google Scholar]
  51. Valencian Government. Statistical Portal. Population estimates. [Accessed: 25/11/2022]. [Google Scholar]
  52. R.-J. Villanueva, J.I. Hidalgo, C. Cervigón, J. Villanueva-Oller and J.-C. Cortés, Calibration of an agent-based simulation model to the data of women infected by human papillomavirus with uncertainty. Appl. Soft Comput. 80 (2019) 546–556. [CrossRef] [Google Scholar]
  53. X. Wang, Y. Chen, W. Zhao, Y. Wang, Q. Song, H. Liu, J. Zhao, X. Han, X. Hu, H. Grundmann, et al., A data-driven mathematical model of multi-drug resistant Acinetobacter baumannii transmission in an intensive care unit. Sci. Rep. 5 (2015) 1–8. [CrossRef] [Google Scholar]
  54. C. Wendt, B. Dietze, E. Dietz and H. Ruoden, Survival of Acinetobacter baumannii on dry surfaces. J. Clin. Microbiol. 35 (1997) 1394–1397. [CrossRef] [PubMed] [Google Scholar]
  55. R. Wise, Antimicrobial resistance: priorities for action. J. Antimicrob. Chemother. 49 (2002) 585–586. [CrossRef] [PubMed] [Google Scholar]
  56. World Health Organization (WHO), Antimicrobial resistance. (2020) [Accessed: 25/11/2022]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.