Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 32
Number of page(s) 20
Section Mathematical methods
Published online 30 November 2023
  1. F.P. Angel, The Hamilton-type Principle in Fluid Dynamics. Fundamentals and Applications to Magnetohydrodynamics, Thermodynamics, and Astrophysics. SpringerWienNewYork, Vienna (2006) xxvi+404. [Google Scholar]
  2. M. Arnaudon and A.B. Cruzeiro, Lagrangian Navier–Stokes diffusions on manifolds: variational principle and stability. Bull. Sci. Math. 136 (2012) 857–881. [CrossRef] [MathSciNet] [Google Scholar]
  3. D.E. Betounes, Kinematics of submanifolds and the mean curvature normal. Arch. Rational Mech. Anal. 96 (1986) 1–27. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Bothe and J. Prüss, On the two-phase Navier–Stokes equations with Boussinesq–Scriven surface fluid. J. Math. Fluid Mech. 12 (2010) 133–150. [CrossRef] [MathSciNet] [Google Scholar]
  5. M.J. Boussinesq, Sur l’existence d’une viscosité seperficielle, dans la mince couche de transition séparant un liquide d’un autre fluide contigu. Ann. Chim. Phys. 29 (1913) 349–357. [Google Scholar]
  6. G. Dziuk and C.M. Elliott, Finite elements on evolving surfaces. IMA J. Numer. Anal. 27 (2007) 262–292. MR2317005. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Feireisl, Mathematical Thermodynamics of Viscous Fluids. Mathematical Thermodynamics of Complex Fluids. Lecture Notes in Math., Vol. 2200. Fond. CIME/CIME Found. Subser., Springer, Cham (2017) 47–100. [Google Scholar]
  8. H. Garcke, B. Stoth and B. Nestler, Anisotropy in multi-phase systems: a phase field approach. Interfaces Free Bound. 1 (1999) 175–198. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Garcke, B. Nestler and B. Stoth, A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60 (2000) 295–315. [Google Scholar]
  10. R. Gatignol and R. Prud’homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces. World Scientific, Singapore (2001) xviii+248. [Google Scholar]
  11. J.W. Gibbs, The Scientific Papers of J. Willard Gibbs. Vol. I: Thermodynamics. Dover Publications, Inc., New York (1961/1906) xxvi+434. [Google Scholar]
  12. M.E. Gurtin, A. Struthers and W.O. Williams, A transport theorem for moving interfaces. Quart. Appl. Math. 47 (1989) 773–777. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.E. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010) xxii+694. [Google Scholar]
  14. I. Gyarmati, Non-equilibrium Thermodynamics. Springer (1970). [CrossRef] [Google Scholar]
  15. Y. Hyon, D.Y. Kwak and C. Liu, Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Contin. Dyn. Syst. 26 (2010) 1291–1304. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Koba, On derivation of compressible fluid systems on an evolving surface. Quart. Appl. Math. 76 (2018) 303–359. [Google Scholar]
  17. H. Koba, On generalized compressible fluid systems on an evolving surface with a boundary. Quart. Appl. Math. 81 (2023) 721–749. [CrossRef] [MathSciNet] [Google Scholar]
  18. H. Koba, On generalized diffusion and heat systems on an evolving surface with a boundary. Quart. Appl. Math. 78 (2020) 617–640 [Google Scholar]
  19. H. Koba, Energetic variational approaches for inviscid multiphase flow systems with surface flow and tension, preprint. arXiv:2211.06672. [Google Scholar]
  20. H. Koba, C. Liu and Y. Giga, Energetic variational approaches for incompressible fluid systems on an evolving surface. Quart. Appl. Math. 75 (2017) 359–389. [Google Scholar]
  21. H. Koba and K. Sato, Energetic variational approaches for non-Newtonian fluid systems. Z. Angew. Math. Phys. 69 (2018) 143. [CrossRef] [Google Scholar]
  22. Y. Mitsumatsu and Y. Yano, Geometry of an incompressible fluid on a Riemannian manifold. Geometric Mech. (Japanese) (Kyoto, 2002). Sūrikaisekikenkyūsho Kokyuroku. 1260 (2002) 33–47. [Google Scholar]
  23. J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations. Monographs in Mathematics, Vol. 105. Birkhäuser/Springer, Cham (2016). xix+609. [Google Scholar]
  24. L.E. Scriven, Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem. Eng. Sci. 12 (1960) 98–108. [CrossRef] [Google Scholar]
  25. J. Serrin, Mathematical Principles of Classical Fluid Mechanics. 1959 Handbuch der Physik (herausgegeben von S. Flugge), Bd. 8/1, Stromungsmechanik I (Mitherausgeber C. Truesdell). Springer-Verlag, Berlin-Gottingen-Heidelberg (2013) 125–263. [Google Scholar]
  26. J.C. Slattery, Momentum and moment-of-momentum balances for moving surfaces. Chem. Eng. Sci. 19 (1964) 379–385. [CrossRef] [Google Scholar]
  27. J.C. Slattery, L. Sagis and E.-S. Oh, Interfacial Transport Phenomena. 2nd edn. Springer, New York (2007) xviii+827. [Google Scholar]
  28. L. Simon, Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983) vii+272. [Google Scholar]
  29. M.E. Taylor, Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17 (1992) 1407–1456. [CrossRef] [Google Scholar]
  30. T. Zhang, S. Sun and H. Bai, Thermodynamically-consistent flash calculation in energy industry: From iterative schemes to a unified thermodynamics-informed neural network. Int. J. Energy Res. 46 (2022) 14581–16101. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.