Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 31
Number of page(s) 19
Section Physics
Published online 13 November 2023
  1. M. Batista, Steady motion of a rigid disk of finite thickness on a horizontal plane. Int. J. Non-Linear Mech. 41 (2006) 605. [CrossRef] [Google Scholar]
  2. L. Bildsten, Viscous dissipation for Euler’s disk. Phys. Rev. E 66 (2002) 056309. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.V. Borisov and I.S. Mamaev, The rolling of rigid body on a plane and sphere. Reg. Chaotic Dyn. 7 (2002) 177. [CrossRef] [Google Scholar]
  4. A.V. Borisov, A.A. Kilin and Y.L. Karavaev, Retrograde motion of a rolling disk. Physics-Uspekhi 60 (2017) 931. [CrossRef] [Google Scholar]
  5. A.V. Borisov, I.S. Mamaev and A.A. Kilin, Dynamics of rolling disk. Reg. Chaotic Dyn. 8 (2003) 201. [CrossRef] [Google Scholar]
  6. E. Bormashenko, Rotating and rolling rigid bodies and the “hairy ball” theorem. Am. J. Phys. 85 (2017) 447. [CrossRef] [Google Scholar]
  7. C.M. Braams, On the influence of friction on the motion of a top. Physica 18 (1952) 503–514. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Branicki, H.K. Moffatt and Y. Shimomura, Dynamics of an axisymmetric body spinning on a horizontal surface. III. Geometry of steady state structures for convex bodies. Proc. R. Soc. Lond. A 462 (2006) 371. [Google Scholar]
  9. H. Caps, S. Dorbolo, S. Ponte, H. Croisier and N. Vandewalle, Rolling and slipping motion of Euler’s disk. Phys. Rev. E 69 (2004) 056610. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. N. Cheesman, S.J. Hogan and K.U. Kristiansen, The geometry of the Painlevé paradox. SIAM J. Appl. Dyn. Syst. 21 (2022) 1798. [CrossRef] [MathSciNet] [Google Scholar]
  11. Y.A. Çengel and J.M. Cimbala, Fluid Mechanics: Fundamentals and Applications, 3rd edn. McGraw Hill (2013). [Google Scholar]
  12. K. Easwar, F. Rouyer and N. Menon, Speeding to a stop: the finite-time singularity of a spinning disk. Phys. Rev. E 66 (2002) 045102(R). [CrossRef] [Google Scholar]
  13. R.A. Granger, Fluid Mechanics, 1st edn. Dover Publications (1995). [Google Scholar]
  14. C.G. Gray and B.G. Nickel, Constants of the motion for nonslipping tippe tops and other tops with round pegs. Am. J. Phys. 68 (2000) 821. [CrossRef] [Google Scholar]
  15. F. Génot and B. Brogliato, New results on Painlevé paradoxes. Eur. J. Mech. A/Solids 18 (1999) 653. [CrossRef] [MathSciNet] [Google Scholar]
  16. S.J. Hogan and K.U. Kristiansen, On the regularization of impact without collision: the Painlevé paradox and compliance. Proc. R. Soc. A. 473 (2017) 20160773. [CrossRef] [PubMed] [Google Scholar]
  17. N.M. Hugenholtz, On tops rising by friction. Physica 18 (1952) 515–527. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Inarrea, V. Lanchares, V.M. Rothos and J.P. Salas, Chaotic rotations of an asymmetric body with time-dependent moments of inertia and viscous drag. Int. J. Bifurcat. Chaos 13 (2003) 393. [CrossRef] [Google Scholar]
  19. D.P. Jackson, J. Huddy, A. Baldoni and W. Boyes, The mysterious spinning cylinder — rigid-body motion that is full of surprises. Am. J. Phys. 87 (2019) 85. [CrossRef] [Google Scholar]
  20. M.A. Jalali, M.S. Sarebangholi and M.-R. Alam, Terminal retrograde turn of rolling rings. Phys. Rev. E 92 (2015) 032913. [CrossRef] [PubMed] [Google Scholar]
  21. P. Kessler and O.M. O’Reilly, The ringing of Euler’s disk. Reg. Chaotic Dyn. 7 (2002) 49. [CrossRef] [Google Scholar]
  22. A.M. Kuethe and J.D. Schetzer, Foundations of Aerodynamics, 2nd edn. John Wiley & Sons (1959). [Google Scholar]
  23. C. Le Saux, R.I. Leine and C. Glocker, Dynamics of a rolling disk in the presence of dry friction. J. Nonlinear Sci. 15 (2005) 27. [CrossRef] [MathSciNet] [Google Scholar]
  24. R.I. Leine, Experimental and theoretical investigation of the energy dissipation of a rolling disk during its final stage of motion. Arch. Appl. Mech. 79 (2009) 1063. [CrossRef] [Google Scholar]
  25. D. Ma, C. Liu, Z. Zhao and H. Zhang, Rolling friction and energy dissipation in a spinning disc. Proc. R. Soc. A 470 (2014) 20140191. [CrossRef] [PubMed] [Google Scholar]
  26. D. Ma and C. Liu, Dynamics of a spinning disk. J. Appl. Mech. 83 (2016) 061003. [CrossRef] [Google Scholar]
  27. H.K. Moffatt, Euler’s disk and its finite-time singularity. Nature 404 (2000) 833. [CrossRef] [PubMed] [Google Scholar]
  28. H.K. Moffatt and Y. Shimomura, Spinning eggs — a paradox resolved. Nature 416 (2002) 385. [CrossRef] [PubMed] [Google Scholar]
  29. H.K. Moffatt, Y. Shimomura and M. Branicki, Dynamics of an axisymmetric body spinning on a horizontal surface. I. Stability and the gyroscopic approximation. Proc. R. Soc. Lond. A 460 (2004) 3643. [CrossRef] [MathSciNet] [Google Scholar]
  30. H. Rouse, Elementary Mechanics of Fluid, original edn. Dover Publications (1946). [Google Scholar]
  31. M.R.A. Shegelski, I. Kellett, H. Friesen and C. Lind, Motion of a circular cylinder on a smooth surface. Can. J. Phys. 87 (2009) 607. [CrossRef] [Google Scholar]
  32. Y. Shimomura, M. Branicki and H.K. Moffatt, Dynamics of an axisymmetric body spinning on a horizontal surface. II. Selfinduced jumping. Proc. R. Soc. Lond. A 461 (2005) 1753. [Google Scholar]
  33. A.E. Sikkema, S.D. Steenwyk and J.W. Zwart, Spinning tubes: an authentic research experience in a three-hour laboratory. Am. J. Phys. 78 (2010) 467. [CrossRef] [Google Scholar]
  34. W.Z. Stepniewski and C.N. Keys, Rotary-Wing Aerodynamics, reprint edn. Dover Publications (1984). [Google Scholar]
  35. D.E. Stewart, Rigid-body dynamics with friction and impact. SIAM Rev. 42 (2000) 3. [CrossRef] [MathSciNet] [Google Scholar]
  36. R. Villanueva and M. Epstein, Vibrations of Euler’s disk. Phys. Rev. E 71 (2005) 066609. [CrossRef] [PubMed] [Google Scholar]
  37. F.M. White, Fluid Mechanics, 8th edn. McGraw Hill (2015). [Google Scholar]
  38. L.A. Whitehead and F.L. Curzon, Spinning objects on horizontal planes. Am. J. Phys. 51 (1983) 449. [CrossRef] [Google Scholar]
  39. [Google Scholar]
  40. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.