Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 131 - 145
DOI https://doi.org/10.1051/mmnp/20127211
Published online 29 February 2012
  1. J.L. Bona, A.S. Fokas. Initial-boundary-value problems for linear and integrable nonlinear dispersive equations. Nonlinearity, 21 (2008), T195-T203. [CrossRef] [Google Scholar]
  2. J.L. Bona, W.G. Pritchard, L.R. Scott. An evaluation of a model equation for water waves. Philos. Trans. R. Soc. Lond., A 302 (1981), 458–510. [Google Scholar]
  3. J. Bona, R. Winther. The Korteweg–de Vries equation, posed in a quarter–plane. SIAM J. Math. Anal., 14 (1983), 1056–1106. [CrossRef] [MathSciNet] [Google Scholar]
  4. R. Carroll, Q. Bu. Solution of the forced nonlinear Schrödinger (NLS) equation using PDE techniques. Appl. Anal., 41 (1991), 33–51. [CrossRef] [MathSciNet] [Google Scholar]
  5. C.K. Chu, L.W. Xiang, Y. Baransky. Solitary waves induced by boundary motion. Commun. Pure Appl. Math., 36 (1983), 495–504. [CrossRef] [Google Scholar]
  6. S. Clark, F. Gesztesy. Weyl-Titchmarsh M-function asymptotics for matrix-valued Schrödinger operators. Proc. Lond. Math. Soc., III. Ser., 82 (2001), 701–724. [CrossRef] [Google Scholar]
  7. S. Clark, F. Gesztesy, M. Zinchenko. Weyl-Titchmarsh theory and Borg-Marchenko-type uniqueness results for CMV operators with matrix-valued Verblunsky coefficients. Oper. Matrices, 1 (2007), 535–592. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.S. Fokas. Integrable nonlinear evolution equations on the half-line. Comm. Math. Phys., 230 (2002), 1–39. [CrossRef] [MathSciNet] [Google Scholar]
  9. A.S. Fokas. A unified approach to boundary value problems. CBMS-NSF Regional Conference Ser. in Appl. Math. vol. 78. SIAM, Philadelphia, 2008. [Google Scholar]
  10. A.S. Fokas, J. Lenells. Explicit soliton asymptotics for the Korteweg–de Vries equation on the half-line. Nonlinearity, 23 (2010), 937–976. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Freiling, V. Yurko. Inverse Sturm–Liouville Problems and Their Applications. Nova Science Publishers, Huntington, N.Y., 2001. [Google Scholar]
  12. F. Gesztesy, B. Simon. On local Borg-Marchenko uniqueness results. Commun. Math. Phys., 211 (2000), 273–287. [CrossRef] [Google Scholar]
  13. F. Gesztesy, B. Simon. A new approach to inverse spectral theory. II. General real potentials and the connection to the spectral measure. Ann. of Math. (2), 152 (2000), 593–643. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Sturm-Liouville systems with rational Weyl functions : explicit formulas and applications. Integr. Equ. Oper. Theory, 30 (1998), 338–377. [CrossRef] [Google Scholar]
  15. M. Kac, P. van Moerbeke. A complete solution of the periodic Toda problem. Proc. Natl. Acad. Sci. USA, 72 (1975), 2879–2880. [CrossRef] [Google Scholar]
  16. D.J. Kaup, H. Steudel. Recent results on second harmonic generation. Contemp. Math., 326 (2003), 33–48. [CrossRef] [Google Scholar]
  17. A. Kostenko, A. Sakhnovich, G. Teschl. Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials. Int. Math. Res. Not. 2011, Art. ID rnr065, 49pp. [Google Scholar]
  18. P.C. Sabatier. Elbow scattering and inverse scattering applications to LKdV and KdV. J. Math. Phys., 41 (2000), 414–436. [CrossRef] [MathSciNet] [Google Scholar]
  19. P.C. Sabatier. Lax equations scattering and KdV. J. Math. Phys., 44 (2003), 3216–3225. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.C. Sabatier. Generalized inverse scattering transform applied to linear partial differential equations. Inverse Probl., 22 (2006), 209–228. [CrossRef] [Google Scholar]
  21. A.L. Sakhnovich. Dirac type and canonical systems : spectral and Weyl-Titchmarsh fuctions, direct and inverse problems. Inverse Probl., 18 (2002), 331–348. [CrossRef] [MathSciNet] [Google Scholar]
  22. A.L. Sakhnovich. Second harmonic generation : Goursat problem on the semi-strip, Weyl functions and explicit solutions. Inverse Probl., 21 (2005), 703–716. [CrossRef] [MathSciNet] [Google Scholar]
  23. A.L. Sakhnovich. On the compatibility condition for linear systems and a factorization formula for wave functions. J. Differ. Equations, 252 (2012), 3658–3667. [CrossRef] [MathSciNet] [Google Scholar]
  24. A.L. Sakhnovich. Sine-Gordon theory in a semi-strip. Nonlinear Analysis, 75 (2012), 964–974. [CrossRef] [MathSciNet] [Google Scholar]
  25. L.A. Sakhnovich. Nonlinear equations and inverse problems on the semi-axis (Russian). Preprint 87.30. Mathematical Institute, Kiev, 1987. [Google Scholar]
  26. L.A. Sakhnovich. Evolution of spectral data, and nonlinear equations. Ukrain. Math. J., 40 (1988), 459–461. [CrossRef] [Google Scholar]
  27. L.A. Sakhnovich. Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Operator Theory Adv. Appl. Ser. vol. 107. Birkhäuser, Basel, 1999. [Google Scholar]
  28. B.A. Ton. Initial boundary value problems for the Korteweg-de Vries equation. J. Differ. Equations 25 (1977), 288–309. [CrossRef] [Google Scholar]
  29. P.A. Treharne, A.S. Fokas. The generalized Dirichlet to Neumann map for the KdV equation on the half-line. J. Nonlinear Sci., 18 (2008), 191–217. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.