Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 1, 2016
Reviews in mathematical modelling
Page(s) 92 - 115
DOI https://doi.org/10.1051/mmnp/201611106
Published online 22 February 2016
  1. A. S. Ackleh, K. Deng, K. Ito, J. J. Thibodeaux. A structured poiesis model with nonlinear cell maturation velocity and hormone decay rate. Math Biosci. (2006), No. 204 (1), 21–48. [CrossRef] [MathSciNet] [PubMed]
  2. A. S. Ackleh, J. J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Math Biosci Eng. (2008), No. 5 (4), 601–16. [CrossRef] [MathSciNet] [PubMed]
  3. M. Adimy, O. Angulo, F. Crauste, J.C. Lopez-Marcos. Numerical integration of a mathematical model of hematopoietic stem cell dynamics, Computers Mathematics with Applications. (2008), Vol. 56 (3), 594–60. [CrossRef] [MathSciNet]
  4. M. Adimy, O. Angulo, J. Lopez-Marcos, M. L. Opez-Marcos. Asymptotic behaviour of a mathematical model of hematopoietic stem cell dynamics. International Journal of Computer Mathematics. (2014), Vol. 91, No. 2, 198–208. [CrossRef]
  5. M. Adimy, O. Angulo, C. Marquet, L. Sebaa. A mathematical model of multistage hematopoietic cell lineages. Discrete and Continuous Dynamical Systems - Series B (2014) Vol. 19, No. 1, 1–26. [CrossRef] [MathSciNet]
  6. M. Adimy, S. Bernard, J. Clairambault, F. Crauste, S. Génieys, L. Pujo-Menjouet. Modélisation de la dynamique de l’hématopoîèse normale et pathologique. Hématologie. (2008), 14 (5), 339–350.
  7. M. Adimy, A. Chekroun, T. M. Touaoula. Age structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete and Continuous Dynamical Systems - Series B. (2015), Vol. 20, No. 9, 2765–2791. [CrossRef] [MathSciNet]
  8. M. Adimy, A. Chekroun, T. M. Touaoula. A delay differential-difference system of hematopoietic stem cell dynamics. Comptes Rendus Mathématiques. (2015), 353 (4), 303–307. [CrossRef] [MathSciNet]
  9. M. Adimy, F. Crauste. Un modèle non-linéaire de prolifération cellulaire : extinction des cellules et invariance. Comptes Rendus Mathématiques. (2003), 336, 559–564. [CrossRef] [MathSciNet]
  10. M. Adimy, F. Crauste. Global stability of a partial differential equation with distributed delay due to cellular replication. Nonlinear Analysis. (2003), TMA, 54 (8), 1469–1491. [CrossRef] [MathSciNet]
  11. M. Adimy, F. Crauste. Stability and instability induced by time delay in an erythropoiesis model. Monografias del Seminario Matematico Garcia de Galdeano. (2004), 31, 3–12.
  12. M. Adimy, F. Crauste. Existence, positivity and stability for a nonlinear model of cellular proliferation. Nonlinear Analysis: Real World Applications. (2005), 6 (2), 337–366. [CrossRef] [MathSciNet]
  13. M. Adimy, F. Crauste. Modelling and asymptotic stability of a growth factor-dependent stem cells dynamics model with distributed delay. Discrete and Continuous Dynamical Systems Series B. (2007), 8(1), 19–38. [CrossRef] [MathSciNet]
  14. M. Adimy, F. Crauste. Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulation. Mathematical and Computer Modelling. (2009), 49, 2128–2137. [CrossRef] [MathSciNet]
  15. M. Adimy, F. Crauste. Delay Differential Equations and Autonomous Oscillations in Hematopoietic Stem Cell Dynamics Modeling. Mathematical Modelling of Natural Phenomena (2012) 7 (6), 1–22. article [CrossRef] [EDP Sciences]
  16. M. Adimy, F. Crauste, A. El Abdllaoui. Asymptotic behavior of a discrete maturity structured system of hematopoietic stem cell dynamics with several delays. Journal of Mathematical Modelling and Natural Phenomena (2006), 1(2), 1–19. [CrossRef] [EDP Sciences]
  17. M. Adimy, F. Crauste, A. El Abdllaoui. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. Journal of Biological Systems (2008), Vol. 16 (3), 395–424. [CrossRef]
  18. M. Adimy, F. Crauste, A. El Abdllaoui. Boundedness and Lyapunov Function for a Nonlinear System of Hematopoietic Stem Cell Dynamics. Comptes Rendus Mathematique, (2010) 348 (7-8), 373–377. [CrossRef]
  19. M. Adimy, F. Crauste, A. Halanay, M. Neamtu, D. Opris. Stability of limit cycles in a pluripotent stem cell dynamics model. Chaos, Solitons and Fractals (2006), 27 (4), 1091–1107. [CrossRef] [MathSciNet]
  20. M. Adimy, F. Crauste, My L. Hbid, R. Qesmi. Stability and Hopf bifurcation for a cell population model with state-dependent delay. SIAM J. Appl. Math. (2010) 70 (5), 1611–1633. [CrossRef]
  21. M. Adimy, F. Crauste, C. Marquet. Asymptotic behavior and stability switch for a mature-immature model of cell differentiation. Nonlinear Analysis: Real World Applications (2010) 11 (4), 2913–2929. [CrossRef] [MathSciNet]
  22. M. Adimy, F. Crauste, L. Pujo-Menjouet. On the stability of a maturity structured model of cellular proliferation. Dis. Cont. Dyn. Sys. Ser. A (2005), 12 (3), 501–522. .
  23. M. Adimy, F. Crauste, S. Ruan. Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications (2005), 6 (4), 651–670. [CrossRef] [MathSciNet]
  24. M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math. (2005), 65 (4), 1328–1352. [CrossRef] [MathSciNet]
  25. M. Adimy, F. Crauste, S. Ruan. Periodic Oscillations in Leukopoiesis Models with Two Delays. Journal of Theoretical Biology (2006), 242, 288–299. [CrossRef] [MathSciNet] [PubMed]
  26. M. Adimy, F. Crauste, S. Ruan. Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bulletin of Mathematical Biology (2006), 68 (8), 2321–2351. [CrossRef] [MathSciNet] [PubMed]
  27. M. Adimy, K. Ezzinbi, C. Marquet. Ergodic and weighted pseudo-almost periodic solutions for partial functional differential equations in fading memory spaces. Journal of Applied Mathematics and Computing (2014) 44, No. 1-2, 147-165. [CrossRef] [MathSciNet]
  28. M. Adimy, C. Marquet. On the stability of hematopoietic model with feedback control. C. R. Math. Acad. Sci. Paris. (2012) 350, 173–176. [CrossRef] [MathSciNet]
  29. M. Adimy, L. Pujo-Menjouet. A singular transport model describing cellular division. C.R. Acad. Sci. Paris (2001), 332 (12), 1071–1076. [CrossRef] [MathSciNet]
  30. M. Adimy, L. Pujo-Menjouet. A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. Electron. J. Diff. Equ. (2003), 107, 1–14.
  31. M. Adimy, L. Pujo-Menjouet. Asymptotic behavior of a singular transport equation modelling cell division. Dis. Cont. Dyn. Sys. Ser. B (2003), 3 (3), 439-456. [CrossRef]
  32. E. Afenya, S. Mundle. Hematologic Disorders and Bone Marrow Peripheral Blood Dynamics. Math. Model. Nat. Phenom. (2010) Vol. 5, No. 3, 15–27. DOI: 10.1051/mmnp/20105302. [CrossRef] [EDP Sciences]
  33. T. Alarcon, P. Getto, A. Marciniak-Czochra, M. D. Vivanco. A model for stem cell population dynamics with regulated maturation delay. Disc. Cont. Dyn. Syst. Suppl. (2011), 32–43.
  34. U. an der Heiden, M.C. Mackey. Mixed feedback: A paradigm for regular and irregular oscillations. Temporal Disorder in Human Oscillatory Systems (eds. L. Rensing, U. an der Heiden, and M.C. Mackey), Springer-Verlag, New York, Berlin, Heidelberg 1987, 30–36.
  35. E.S. Antoniou, C. L. Mouser, M. E. Rosar, J. Tadros, E. K. Vassiliou. Hematopoietic stem cell proliferation modeling under the influence of hematopoietic-inducing agent. Shock. (2009) Nov;32(5):471-7. doi: 10.1097/SHK.0b013e3181a1a05f. [CrossRef] [PubMed]
  36. R. Apostu, M.C. Mackey. Understanding cyclical thrombocytopenia: A mathematical modeling approach. J. Theor. Biol. (2008), 251, 297–316. [CrossRef] [PubMed]
  37. O. Arino, M. Kimmel. Asymptotic analysis of a functional-integral equation related to cell population kinetics, North-Holland Mathematics Studies, Proceedings of the VIth International Conference on Trends in the Theory and Practice of Non-Linear Analysis (1985), 110:27–32.
  38. O. Arino, M. Kimmel. Stability analysis of models of cell production systems, Math. Modelling, (1986), 7, 9–12. [CrossRef] [MathSciNet]
  39. O. Arino, M. Kimmel. Asymptotic analysis of a cell cycle model based on unequal division, SIAM J. Appl. Math., (1987), 47(1):128–145. [CrossRef]
  40. O. Arino, M. Kimmel, M. Zerner. Analysis of a cell population model with unequal division and random transition, Lecture Notes in Pure and Appl. Math., 131 (1991), 3–12.
  41. O. Arino, A. Mortabit. Slow oscillations in a model of cell population dynamics, Lecture Notes in Pure and Appl. Math., 131 (1991), 13–25.
  42. O. Arino, M. Kimmel. Comparison of approaches to modeling of cell population dynamics, SIAM J. Appl. Math., 53 (1993) (5):1480–1504. [CrossRef] [MathSciNet]
  43. O. Arino, M. Kimmel, G. F. Webb. Mathematical modelling of the loss of telomere sequences, J. Theoretical Biology, 177 (1995), 45–57. [CrossRef] [PubMed]
  44. O. Arino, E. Sánchez. A survey of cell population dynamics, J. Theor. Med., 1 (1997)(1):35–51. [CrossRef]
  45. O. Arino, E. Sánchez, G. F. Webb. Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl., 215 (1997), (2):499–513. [CrossRef] [MathSciNet]
  46. O. Arino, E. Sánchez, G. F. Webb. Polynomial growth dynamics of telomere loss in a heterogeneous cell population, Dynam. Contin. Discrete Impuls. Systems, Arino, O., Axelrod, D. and Kimmel, M., editors., 3(1997) (3):263–282.
  47. J.L. Avila Alonso, C. Bonnet, J. Clairambault, H. Özbay, S.-I. Niculescu, F. Merhi, A. Ballesta, R. P. Tang, J. P. Marie. Delay Systems : From Theory to Numerics and Applications, T. Vyhlídal, J.-F. Lafay, R. Sipahi eds., Advances in Delays and Dynamics series, Springer, New York (2014), 315–328. Analysis of a New Model of Cell Population Dynamics in Acute Myeloid Leukemia
  48. S. Balea, A. Halanay, D. Jardan, M. Neamţu, C. A. Safta. Stability Analysis of a Feedback Model for the Action of the Immune System in Leukemia. Math. Model. Nat. Phenom. (2014) Vol. 9, No. 1, 108–32. DOI: 10.1051/mmnp/20149108. [CrossRef] [EDP Sciences]
  49. H. T. Banks, C. E. Cole, P. M. Schlosser, H. T. Tran. Modeling and optimal regulation of erythropoiesis subject to benzene intoxication. Math Biosci Eng. (2004);1(1):15–48. Jun [CrossRef] [MathSciNet] [PubMed]
  50. A. J. Becker, E. A. McCulloch, J. E. Till. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, (1963), 197(4866), 452–4. (Bibcode:1963Natur.197.452B. doi:10.1038/197452a0) [CrossRef] [PubMed]
  51. F. Bekkal Brikci, J. Clairambault, B. Ribba, B. Perthame. An age-and-cyclin-structured cell population model for healthy and tumoral tissues, Journal of Mathematical Biology (2008) 57(1):91–110. [CrossRef] [MathSciNet] [PubMed]
  52. F. Bekkal Brikci, J. Clairambault, B. Ribba, B. Perthame. Analysis of a molecular structured population model with polynomial growth for the cell cycle. Mathematical and Computer Modelling (2008), 47(7-8): 699–713. [CrossRef] [MathSciNet]
  53. J. Bélair, M.C. Mackey. A model for the regulation of mammalian platelet production, Ann. N.Y. Acad. Sci. (1987), 504, 280–282. [CrossRef]
  54. J. Bélair, M.C. Mackey, J.M. Mahaffy. Age-structured and two delay models for erythropoiesis, Math. Biosci. (1995), 128, 317–346. [CrossRef] [PubMed]
  55. J. Bélair, J.M. Mahaffy. Variable maturation velocity and parameter sensitivity in a model of haematopoiesis. IMA J. Math. Appl. Med Biol. (2001);18(2):193–211. Jun [CrossRef] [PubMed]
  56. S. Bernard, J. Bélair, M.C. Mackey. Sufficient conditions for stability of linear differential equations with distributed delay, Discr. Contin. Dyn. Sys. B (2001), 1:233–256. [CrossRef] [MathSciNet]
  57. S. Bernard, J. Bélair, M.C. Mackey. Oscillations in cyclical neutropenia: new evidence based on mathematical modeling, J. Theor. Biol. (2003), 223:283–298. [CrossRef] [PubMed]
  58. S. Bernard, J. Bélair, M.C. Mackey. Bifurcations in a white-blood-cell production model. C. R. Biologies (2004), 327:201–210. [CrossRef]
  59. S. Bernard, F. Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems Series B (2015) 20 (7), 1855-1876. [CrossRef]
  60. S. Bernard, D. Gonze, B. C˘ajavec, H. Herzel, A. Kramer. Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLOS Comput Biol. (2007) 3:e68. [CrossRef]
  61. S. Bernard, L. Pujo-Menjouet, M.C. Mackey. Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data, Biophys. J. (2003), 84:3414–3424. [CrossRef] [PubMed]
  62. N. Bessonov, E. Babushkina, S. F. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, V. Volpert. Numerical Modelling of Cell Distribution in Blood Flow. Math. Model. Nat. Phenom., 9 (2014), no. 6, 69–84. [CrossRef] [EDP Sciences] [MathSciNet]
  63. N. Bessonov, F. Crauste, I. Demin, V. Volpert. Dynamics of erythroid progenitors and erythroleukemia. Mathematical Modeling of Natural Phenomena (2009), 4 (3), 210–232. [CrossRef] [EDP Sciences]
  64. N. Bessonov, F. Crauste, S. Fischer, P. Kurbatova, V. Volpert. Application of Hybrid Models to Blood Cell Production in the Bone Marrow. Math. Model. Nat. Phenom. (2011) 6 (7), 2–12. [CrossRef] [EDP Sciences] [MathSciNet]
  65. N. Bessonov, L. Pujo-Menjouet, V. Volpert. Cell Modelling of Hematopoiesis. Math. Model. Nat. Phenom. (2006) Vol. 1, No. 2, 81–103. [CrossRef] [EDP Sciences] [MathSciNet]
  66. D. Bonnet, J.E. Dick. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, (1997), 3 (7), 730–737. doi:10.1038/nm0797-730. PMID 9212098. [CrossRef] [PubMed]
  67. R. Borges, A. Calsina, S. Cuadrado, O. Diekmann. Delay equation formulation of a cyclin-structured cell population model. Journal of Evolution Equations (2014) 14 (4-5), 841–862. [CrossRef] [MathSciNet]
  68. A. Bouchnita, N. Eymard, M. Koury, V. Volpert. Initiation of erythropoiesis by BFU-E cells. ITM Web of Conferences 4, 01002 (2015) DOI: 10.1051/itmconf/20150401002.
  69. A. Bouzinab, O. Arino. On the existence and uniqueness for an age-dependent population model with nonlinear growth, Facta Univ. Ser. Math. Inform., (1993) (8):55–68.
  70. D. Breda, O. Diekmann, S. Maset, R. Vermiglio. A numerical approach to investigate the stability of equilibria for structured population models. Journal of biological dynamics (2013) 7 (Suppl. 1), 4–20. [CrossRef] [PubMed]
  71. G. Brooks, G. Provencher Langlois, J. Lei, M.C. Mackey. Neutrophil dynamics after chemotherapy and G-CSF: The role of pharmacokinetics in shaping the response. J. Theor. Biol. (2012), 315, 97–109. [CrossRef] [PubMed]
  72. B. Bungart, M. Loeffler, H. Goris, B. Dontje, V. Diehl, W. Nijhof. Differential effects of rekombinant human colony stimulating factor (rh G-CSF) on stem cells in marrow, spleen and peripheral blood in mice, Br. J. Haematol. 76 (1990) 174–179. [CrossRef]
  73. F. J. Burns, J. F. Tannock, On the existence of a G0-phase in the cell cycle. Cell Tissue Kinet. (1970), 3:321–334. [PubMed]
  74. C. Calmelet, A. Prokop, J. Mensah, L. J. McCawley, P. S. Crooke. Modeling the Cancer Stem Cell Hypothesis. Math. Model. Nat. Phenom. (2010) Vol. 5, No. 3, 40–62. DOI: 10.1051/mmnp/20105304. [CrossRef] [EDP Sciences]
  75. P. Carnot, C. Deflandre. Sur l’activité hémopoïétique du sérum au cours de la régénération du sang. Comptes rendus hebdomadaires des séances de l’Académie des sciences, (1906), 143: 384–432.
  76. V. Chickarmane, T. Enver, C. Peterson. Computational modeling of the hematopoietic erythroid- myeloid switch reveals insights into cooperativity. PLoS Comput. Biol. (2009) 5, doi:10.1371/journal.pcbi.1000268.
  77. J. Clairambault. A Step Toward Optimization of Cancer Therapeutics. Physiologically Based Modeling of Circadian Control on Cell Proliferation. IEEE-EMB Magazine (2008), 27(1):20-24.
  78. J. Clairambault. Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments. Mathematical Modelling of Natural Phenomena (2009), 4(3) : 12–67. [CrossRef] [EDP Sciences]
  79. J. Clairambault, S. Gaubert, T. Lepoutre. Comparison of Perron and Floquet eigenvalues in age structured cell division models. Mathematical Modelling of Natural Phenomena (2009), 4(3) : 183–209. [CrossRef] [MathSciNet]
  80. C. Colijn, D.C. Dale, C. Foley, M.C. Mackey. Observations on the pathophysiology and mechanisms for cyclic neutropenia. Math. Model. Natur. Phenom. (2006), 1(2), 45–69. [CrossRef] [EDP Sciences]
  81. C. Colijn, C. Foley, M.C. Mackey. G-CSF treatment of canine cyclical neutropenia: A comprehensive mathematical model. Exper. Hematol. (2007), 35, 898–907. [CrossRef]
  82. C. Colijn, A.C. Fowler, M.C. Mackey. High frequency spikes in long period blood cell oscillations. J. Math. Biol. (2006), 53(4), 499–519. [CrossRef] [MathSciNet] [PubMed]
  83. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis: Periodic chronic myelogenous leukemia, part I. J. Theor. Biol. (2005), 237, 117–132. [CrossRef] [PubMed]
  84. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis: Cyclical neutropenia, part II. J. Theor. Biol. (2005), 237, 133–146. [CrossRef] [PubMed]
  85. C. Colijn, M.C. Mackey. Bifurcation and bistability in a model of hematopoietic regulation, SIAM J. App. Dynam. Sys. (2007), 6(2), 378–394. [CrossRef]
  86. F. Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering (2006), 3 (2), 325–346. [CrossRef] [MathSciNet]
  87. F. Crauste. Delay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch. Math. Model. Nat. Phenom. (2009) Vol. 4, No. 2, 28–47. [CrossRef] [EDP Sciences]
  88. F. Crauste. Stability and Hopf bifurcation for a first-order linear delay differential equation with distributed delay, in Complex Time Delay Systems (Ed. F. Atay), Springer, 1st edition, (2010) 320 p., ISBN: 978-3-642-02328-6.
  89. F. Crauste. A review on local asymptotic stability analysis for mathematical models of hematopoietic with delay and delay-dependent coefficients. Annals of the Tiberiu Popoviciu Seminar of functionnal equations, approximation and convexity (2011) 9, 121-143.
  90. F. Crauste, I. Demin, O. Gandrillon, V. Volpert. Mathematical study of feedback control roles and relevance in stress erythropoiesis. Journal of Theoretical Biology, (2010) 263 (3), 303–316. [CrossRef] [MathSciNet] [PubMed]
  91. F. Crauste, L. Pujo-Menjouet, S. GÃľnieys, C. Molina, O. Gandrillon. Adding Self-Renewal in Committed Erythroid Progenitors Improves the Biological Relevance of a Mathematical Model of Erythropoiesis. Journal of Theoretical Biology (2008), 250, 322–338. [CrossRef] [MathSciNet] [PubMed]
  92. F. Crauste, M. Adimy. Bifurcation dans un modÃĺle non-linÃľaire de production du sang. Comptes-rendus de la 7ième Rencontre du Non-linéaire, Non-linéaire Publications, Paris (2004), 73–78.
  93. R. Crabb, M.C. Mackey, A. Rey. Propagating fronts, chaos and multistability in a cell replication model, Chaos (1996) 6, 477–492. [CrossRef] [PubMed]
  94. M. Craig, A.R. Humphries, F. Nekka, J. Belair, J. Li, M.C. Mackey. Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: Mathematical modelling guides dose optimisation to minimize neutropenia. J. Theor. Biol. (2015), 385, 77–89. [CrossRef] [PubMed]
  95. J. M. Cushing. Existence and stability of equilibria in age-structured population dynamics. Math. Biol. (1984), 20, 259–276. [CrossRef] [MathSciNet]
  96. D.C. Dale, M.C. Mackey. Understanding, treating and avoiding hematological disease: Better medicine through mathematics?. Bulletin of Mathematical Biology (2015), 77, 739–757. [CrossRef] [MathSciNet] [PubMed]
  97. G. De Haan, C. H. Engel, B. Dontje, W. Nijhof, M. Loeffler. Mutual inhibition of murine erythropoiesis and granulopoiesis during combined erythropoietin, granulocyte colony-stimulating factor and stem cell factor adminstration: In vivo interactions and dose response surfaces. Blood 12 Vol 84 (1994) 4157–4163.
  98. G. De Haan, B. Dontje, W. Nijhof, M. Loeffler. Effects of Continuous Stem Cell Factor Administration on Normal and Erythropoietin- Stimulated Murine Hemopoiesis. Experimental Results and Model Analysis, Stem Cells (Dayt) 13 (1995) 65-76 [CrossRef]
  99. G. De Haan, C. Engel, B. Dontje, M. Loeffler, W. Nijhof. Hematoxicity by prolonged etoposide adminstration to mice can be prevented by simultaneous growth factor therapy, Cancer Research 55 (1995) 324–329. [PubMed]
  100. G. De Haan, B. Dontje, C. Engel, M. Loeffler, W. Nijhof. The kinetics of murine hemopoietic stem cells in vivo in response to prolonged increased mature blood cell production, induced by granulocyte colony-stimulating factor. Blood 86: 8 (1995) 2986–2992.
  101. G. De Haan, B. Dontje, C. Engel, M. Loeffler, W. Nijhof. In vivo effects of interleukin-11 and stem cell factor in combination with erythropoietin in the regulation of erythropoiesis. British Journal of Hematology (1995) 90: 4, 783–790. [CrossRef]
  102. I. Demin, F. Crauste, O. Gandrillon, V. Volpert. A multi-scale model of erythropoiesis. Journal of Biological Dynamics, (2010) 4 (1), 59–70. [CrossRef] [MathSciNet] [PubMed]
  103. P. K. Dhar, A. Mukherjee, D. Majumder. Difference Delay Equation-Based Analytical Model of Hematopoiesis. Automatic Control of Physiological State and Function Vol. 1 (2012), Article ID 235488, 11 pages doi:10.4303/acpsf/235488.
  104. W. Desch, W. Schappacher, G. F. Webb. Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory and Dynamical Systems 17, (1997), 1–27. [CrossRef] [MathSciNet]
  105. O. Diekmann, H. J. A. M. Heijmans, H. R. Thieme. On the stability of the cell size distribution. J. Math. Biol., (1984) 19:227–248. [CrossRef]
  106. O. Diekmann, K. Korvasovà. A didactical note on the advantage of using two parameters in Hopf bifurcation studies. Journal of biological dynamics (2013) 7 (Suppl. 1), 21–30. [CrossRef] [PubMed]
  107. D. Dingli, A. Traulsen, J. M. Pacheco. Stochastic dynamics of hematopoietic tumor stem cells. Cell Cycle (2007), 6 : 461–6. [CrossRef] [PubMed]
  108. D. Dingli, J. M. Pacheco. Ontogenic growth of the haemopoietic stem cell pool in humans. Proc R Sci B (2007), 274 : 2497–501. [CrossRef]
  109. M. D’Inverno, R. Saunders. Agent-Based Modelling of Stem Cell Self-organisation in a Niche. In : Lecture Notes in Computer Science. Berlin/Heidelberg : Springer, (volume 3464/2005), 2008.
  110. M. Doumic. Analysis of a Population Model Structured by the Cells Molecular Content. Math. Model. Nat. Phenom. (2007) Vol. 2, No. 3, 121–152. [CrossRef] [EDP Sciences] [MathSciNet]
  111. M. Doumic, A. Marciniak-Czochra, B. Perthame, J.P. Zubelli. A structured population model of cell differentiation. SIAM Journal on Applied Mathematics (2011) 71 (6), 1918–1940. [CrossRef]
  112. I. Drobnjak, A.C. Fowler, M.C. Mackey. Oscillations in a maturation model of blood cell production. SIAM J. Appl. Math. (2006), 66(6), 2027–2048. [CrossRef]
  113. A. Ducrot, V. Volpert. On a Model of Leukemia Development with a Spatial Cell Distribution. Math. Model. Nat. Phenom. (2007) Vol. 2, No. 3, pp. 101–120. [CrossRef] [EDP Sciences] [MathSciNet]
  114. A. Ducrot, F. LeFoll, P. Magal, H. Murakawa, J. Pasquier, G. F. Webb. An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition, Math. Mod. Meth. Appl. Sci. Vol.21 (2011), DOI No: 10.1142/S0218202511005404, 871–892.
  115. X. Dupuis. Optimal Control of Leukemic Cell Population Dynamics. Math. Model. Nat. Phenom. (2014) Vol. 9, No. 1, pp. 4–26. DOI: 10.1051/mmnp/20149102. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  116. J. Dyson, E. Sanchez, R. Villella-Bressan, G. F. Webb. Stabilization of telomeres in nonlinear models of proliferating cell lines. J Theor Biol. (2007);244(3):400–8. Feb 7 [CrossRef] [MathSciNet] [PubMed]
  117. J. Dyson, R. Villella-Bressan, G. F. Webb. A singular transport equation modelling a proliferating maturity structured cell population, Canadian Appl. Math. Quart., Vol.4, No.1 (1996), 65–95. [MathSciNet]
  118. J. Dyson, R. Villella-Bressan, G. F. Webb. Hypercyclicity of a transport equation with delays, J. Nonl. Anal. Theory Meth. Appl., Vol. 29, No. 12 (1997), 1343–1351. [CrossRef]
  119. J. Dyson, R. Villella-Bressan, G. F. Webb. A maturity structured model of a population of proliferating and quiescent cells, Archives of Control Sciences, Vol. 9 (XLV) No. 1-2 (1999), 201–225.
  120. J. Dyson, R. Villella-Bressan, G. F. Webb. An age and maturity structured model of cell population dynamics, Mathematical Models in Medical and Health Science, Proceedings of the Conference on Mathematical Models in Medical and Health Sciences, Vanderbilt University Press, (1999), 99–116.
  121. J. Dyson, R. Villella-Bressan, G. F. Webb. A Nonlinear age and maturity structured model of population dynamics. I. Basic Theory. J. Math. Anal. Appl. Vol. 242 (2000), 93–104. [CrossRef]
  122. J. Dyson, R. Villella-Bressan, G. F. Webb. A Nonlinear age and maturity structured model of population dynamics. II. Chaos. J. Math. Anal. Appl. Vol. 242 (2000), 255–270. [CrossRef]
  123. J. Dyson, R. Villella-Bressan, G. F. Webb. Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Math. Biosci., Vol. 177-178 (2002), 73–83. [CrossRef] [PubMed]
  124. J. Dyson, R. Villella-Bressan, G. F. Webb. A semilinear transport equation with delays. Int. J. Math. Math. Sci. Vol. 6, No. 32 (2003), 2011–2026. [CrossRef]
  125. C. Engel, M. Loeffler, H. Franke, S. T. Schmitz. Endogenous thrombopoietin serum levels during multicycle chemotherapy British Journal of Haematology (1999) 105, 832–838. [CrossRef] [PubMed]
  126. C. Engel, M. Scholz, M. Loeffler. A computational model of human granulopoiesis to simulate the hematotoxic effects of multicycle polychemotherapy. BLOOD (2004), 104 (8) 2323–2331. [CrossRef] [PubMed]
  127. N. Eymard · N. Bessonov O. Gandrillon · M. J. Koury V. Volpert. The role of spatial organization of cells in erythropoiesis J Math Biol. (2015) Jan;70(1-2):71-97. doi: 10.1007/s00285-014-0758-y. [CrossRef] [MathSciNet] [PubMed]
  128. S. Fischer, P. Kurbatova, N. Bessonov, O. Gandrillon, V. Volpert, F. Crauste. Modelling erythroblastic islands: using a hybrid model to assess the function of central macrophage. J. Theo. Biol., (2012) 298, 92–106. [CrossRef] [MathSciNet] [PubMed]
  129. C. Foley, S. Bernard, M.C. Mackey. Cost-effective G-CSF therapy strategies for cyclical neutropenia: Mathematical modelling based hypotheses. J. Theor. Biol. (2006), 238:754–763. [CrossRef] [PubMed]
  130. C. Foley, M.C. Mackey. Dynamic hematological disease: A review. J. Math. Biol. (2009), 58, 1, 285–322. [CrossRef] [MathSciNet] [PubMed]
  131. C. Foley, M.C. Mackey. Mathematical model for G-CSF administration after chemotherapy. J. Theor. Biol. (2009), 257, 27–44. DOI:10.1016/j.jtbi.2008.09.043. [CrossRef] [PubMed]
  132. J. Foo, M. W. Drummond, B. Clarkson, T. Holyoke, F. Michor. Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib. PLoS Computational Biology (2009) 5, e10000503. (PDF)
  133. P. Fortin M.C. Mackey. Periodic chronic myelogenous leukemia: Spectral analysis of blood cell counts and etiological implications, Br. J. Haematol. (1999), 104, 336–345. [CrossRef] [PubMed]
  134. A. Fowler, M.C. Mackey. Relaxation oscillations in a class of delay differential equations. SIAM J. Appl. Math. (2002), 63, 299–323. [CrossRef]
  135. J. Galle J, G. Aust, G. Schaller, T. Beyer, D. Drasdo. Individual cell-based models of the spatio-temporal organisation of multicellular systems - achievements and limitations. Cytometry (2006) 69A : 704–10.
  136. P. Getto, A. Marciniak-Czochra. Mathematical Modelling as a Tool to Understand Cell Self-renewal and Differentiation Mammary Stem Cells: Methods and Protocols (2015) 247–266.
  137. I. Glauche, M. Cross, M. Loeffler, I. Roeder. Lineage specification of hematopoietic stem cells: mathematical modeling and biological implications. Stem cells (Dayton, Ohio) 25 (2007), 1791–9. [CrossRef] [PubMed]
  138. I. Glauche, M. Horn, I. Roeder. Leukaemia stem cells: hit or miss? British Journal of Cancer 96 (2007), 677–9. [CrossRef] [PubMed]
  139. I. Glauche, K. Horn, M. Horn, L. Thielecke, M. A. Essers, A. Trumpp, I. Roeder. Therapy of chronic myeloid leukaemia can benefit from the activation of stem cells: simulation studies of different treatment combinations. British journal of cancer 106 (2012) 1742–52. [CrossRef] [PubMed]
  140. I. Glauche, I. Roeder. In silico hematology. Systembiologie.de 42 (2014) 19.
  141. H. Goris, M. Loeffler, B. Bungart, S. Schmitz, W. Nijhof, Hemopoiesis during thiamphenicol treatment. I. Stimulation of stem cells during eradication of intermediate cell stages, Exp. Hematol., 17 (1989), 957–961. [PubMed]
  142. H. Goris, B. Bungart, M. Loeffler, W. Nijhof. Migration of stem cells and progenitors between marrow and spleen following a thiamphenicol treatment of mice, Exp. Hematol. 18 (1990) 400–407. [PubMed]
  143. A. Grabosch, G. F. Webb. Asynchronous exponential growth in transition probability models of the cell cycle, SIAM J. Math. Anal. 18, (1987), 4, 897–907. No.
  144. M. Gyllenberg. The age structure of populations of cells reproducing by asymmetric division, in Mathematics in biology and medicine, V. Capasso, E. Grosso and S.L. Paveri-Fontana (Eds.), Springer Lecture Notes in Biomathematics, (1985), 57, 320–327.
  145. M. Gyllenberg, H. J. A. M. Heijmans. An abstract delay-differential equation modelling size dependent cell growth and division, SIAM J. Math. Anal. (1987), 18, 74–88. [CrossRef] [MathSciNet]
  146. M. Gyllenberg, G. F. Webb. Age-size structure in populations with quiescence. Math. Biosci., (1987) 86(1):67–95. [CrossRef]
  147. M. Gyllenberg, G. F. Webb. Asynchronous exponential growth of semigroups of nonlinear operators, J. Math. Anal. Appl. 167, 2 (1992), 443–467. No. [CrossRef]
  148. H. Haeno, R. L. Levine, D. G. Gilliland, F. Michor. A progenitor cell origin of myeloid malignancies. Proc. Natl. Acad. Sci. U S A (2009) 106, 16616–16621. [CrossRef] [PubMed]
  149. A. Halanay, D. Cândea, I. R. Rădulescu. Existence and Stability of Limit Cycles in a Two-delays Model of Hematopoiesis Including Asymmetric Division. Math. Model. Nat. Phenom. (2014) Vol. 9, No. 1, 58–78. DOI: 10.1051/mmnp/20149105. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  150. D. Hasenclever, O. Brosteanu, T. Gerike, M. Loeffler. Modelling of chemotherapy: The effective dose approach. Ann. Hematol. (2001), 80: B89–B94. [PubMed]
  151. C. Haurie, D.C. Dale, M.C. Mackey. Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models, Blood (1998), 92, 2629–2640. [PubMed]
  152. C. Haurie, D.C. Dale, M.C. Mackey. Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models, Blood (1998), 92, 2629–2640. [PubMed]
  153. C. Haurie, D.C. Dale, M.C. Mackey. Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic and cyclical neutropenic patients before and during treatment with G-CSF, Exper. Hematol. (1999), 27, 401–409. [CrossRef] [PubMed]
  154. C. Haurie, D.C. Dale, R. Rudnicki, M.C. Mackey. Modeling of complex neutrophil dynamics in the grey collie. J. theor. Biol. (2000), 204, 505–519. [CrossRef] [PubMed]
  155. C. Haurie, R. Person, D.C. Dale, M.C. Mackey. Hematopoietic dynamics in grey collies, Exper. Hematol. (1999), 27, 1139–1148. [CrossRef] [PubMed]
  156. T. Hearn, C. Haurie, M.C. Mackey. Cyclical neutropenia and the peripheral control of white blood cell production, J. Theor. Biol. (1998), 192, 167–181. [CrossRef] [PubMed]
  157. R. Hoffman, E.J. Benz, L.E. Silberstein, H. Heslop, J. Weitz and J. Anastasi. Hematology: Basic Principles and Practice, 6th edition. Churchill Livingstone, Elsevier, 2102.
  158. M. Horn, I. Glauche, M. C. Müller, R. Hehlmann, A. Hochhaus, M. Loeffler, I. Roeder. Model-based decision rules reduce the risk of molecular relapse after cessation of tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Blood 121 (2013) 378–84. [CrossRef] [PubMed]
  159. M. Horn, M. Loeffler, I. Roeder. Mathematical modeling of genesis and treatment of chronic myeloid leukemia. Cells, tissues, organs 188 (2008), 236-47. [CrossRef] [PubMed]
  160. S. Huang, Y. P. Guo, G. May, T. Enver. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. biol. (2007), 305, 695–713. [CrossRef] [MathSciNet] [PubMed]
  161. E. V. Hulse. Recovery of Erythropoiesis after Irradiation: A Quantitative Study in the Rat. Brit. J. Haemat., (1963), 9, 365–375. [CrossRef]
  162. A. Krinner, I. Roeder, M. Loeffler, M. Scholz. Merging concepts - coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis. BMC systems biology 7 (2013) 117. [CrossRef] [PubMed]
  163. M. Johnson, G. F. Webb. Resonances in age structured cell population models of periodic chemotherapy, Internat. J. Appl. Sci. Comp., Vol. 3, No. 1 (1996), 57–67.
  164. N. D. Kazarinoff, P. van den Driessche, P. Control of oscillations in hematopoiesis, Science (1979), 203, 1348–1350. [CrossRef] [MathSciNet] [PubMed]
  165. E. Kelemen, I. Cserhati, B. Tanos. Demonstration and some properties of human thrombopoietin in thrombocythemic sera, Acta Haematol., (1958), 20, 350–355. [CrossRef] [PubMed]
  166. E. A. King-Smith, A. Morley. Computer simulation of granulopoiesis: normal and impaired granulopoiesis, Blood (1970), 36, 254–262. [PubMed]
  167. J. Kirk, J. S. Orr, C. S. Hope. A Mathematical Analysis of Red Blood Cell and Bone Marrow Stem Cell Control Mechanisms. British Journal of Haematology, (1968), 15, 1, 35–46. [CrossRef] [PubMed]
  168. L. Kold-Andersen, M.C. Mackey. Resonance in periodic chemotherapy: A case study of acute myelogenous leukemia. J. Theor. Biol. (2001), 209, 113–130. [CrossRef] [PubMed]
  169. C. Kou, M. Adimy, A. Ducrot. On the dynamics of an impulsive model of hematopoiesis. Journal of Mathematical Modelling and Natural Phenomena (2009) 4(2), 89–112. [CrossRef] [EDP Sciences]
  170. M. Koury, M. Bondurant, Erythropoietin retards DNA breakdown and prevents pro- grammed death in erythroid progenitor cells, Science, 248 (1990), pp. 378–381. [CrossRef] [PubMed]
  171. P. Kurbatova, S. Bernard, N. Bessonov, F. Crauste, I. Demin, C. Dumontet, S. Fischer, V. Volpert. Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J. App. Math. (2011) 71 (6), 2246-2268. [CrossRef] [MathSciNet]
  172. A. Lasota, M. C. Mackey, The Extinction of Slowly Evolving Dynamical Systems, J. Math. Biology (1980), 10, 333–345 [CrossRef] [MathSciNet]
  173. A. Lasota, M.C. Mackey, M. Wazewska-Czyzewska, Minimizing therapeutically induced anemia, J. Math. Biol. (1981) 13, 149–158. [CrossRef] [MathSciNet] [PubMed]
  174. A. Lasota, M.C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. (1984) 19, 43–62. [CrossRef] [MathSciNet] [PubMed]
  175. A. Lasota, M. Ważewska-Czyżewska, Matematyczne problemy dynamiki układu krwinek czerwonych (Mathematical problems of the dynamics of red blood cell population), (in Polish), Matematyka Stosowana (1976), 6:23–40.
  176. A. Lasota, K. Loskot, M.C. Mackey. Stability properties of proliferatively coupled cell replication models, Acta Biotheor., 39 (1991), 1–14. [CrossRef] [PubMed]
  177. A. Lasota, M.C. Mackey. Cell division and the stability of cellular replication, J. Math. Biol., 38, (1999), 241–261. [CrossRef]
  178. U. Ledzewicz, H. Schättler. A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy. Math. Model. Nat. Phenom. Vol. 9, No. 4, (2014), 131–152. DOI: 10.1051/mmnp/20149409. [CrossRef] [EDP Sciences]
  179. F. Lévi, A. Altinok, J. Clairambault, A. Goldbeter. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Phil. Trans. Roy. Soc. A (2008), 366 (1880), 3575–3598. [CrossRef]
  180. J. Lei, M.C. Mackey. Stochastic differential delay equation, moment stability, and appplication to hematopoietic stem cell regulation system. SIAM J. Appl. Math., 67(2) (2007), 387–407. [CrossRef]
  181. J. Lei, M. C. Mackey. Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia. J. Theor. Biol., 270 (2011), 143–153. [CrossRef] [PubMed]
  182. J. Lei, M. C. Mackey. Understanding and treating cytopenia through mathematical modeling in Systems Biology Approach to Blood (ed. S. Corey, M. Kimmel, J. Leonard), Springer-Verlag (2013).
  183. A. Liso, F. Castiglione, A. Cappuccio, F. Stracci, R. F. Schlenk, S. Amadori, C. Thiede, S. Schnittger, P. J. M. Valk, K. Doehner, M. F. Martelli, M. Schaich, J. Krauter, A. Ganser, M. P. Martelli, N. Bolli, B. Loewenberg, T. Haferlach, G. Ehninger, F. Mandelli, H. Doehner, F. Michor, B. Falini. A one-mutation mathematical model can explain the age incidence of AML with mutated nucleophosmin (NPM1). Haematologica, 93 (2008), 1219–1226. [CrossRef] [PubMed]
  184. M. Loeffler. Modelling the effects of continuous irradiation on murine haematopoiesis. British Journal of Radiology, (S26) (2002), 188–197.
  185. M. Loeffler, H. E. Wichmann, A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results, Cell Tissue Kinet., 13 (1980), 543–561. [PubMed]
  186. M. Loeffler, P. Herkenrath, H. E. Wichmann, B.I. Lord, M.J. Murphy, The kinetics of hematopoietic stem cells during and after hypoxia - A model analysis, Blood, 49, (1984), 427–439.
  187. M. Loeffler, B. Bungart, H. Goris, S. Schmitz, W. Nijhof, Hemopoiesis during thiamphenicol treatment. II. A theoretical analysis shows consistency of new new data with a previously hypothesized model of stem cell regulation. Exp. Hematol. 17 (1989), 962–967. [PubMed]
  188. M. Loeffler, K. Pantel, H. Wulff, H. E. Wichmann, A mathematical model of erythropoiesis in mice and rats, Part 1. Structure of the model, Cell Tissue Kinet., 22 (1989), 13–30. [PubMed]
  189. M. Loeffler, K. Pantel, A mathematical model of erythropoiesis suggests an altered plasma volume control as cause for anemia in aged mice. Exp. Gerontology, 25 (1990), 483–495. [CrossRef]
  190. M. Loeffler, I. Roeder. Tissue Stem Cells: definition, plasticity, heterogeneity, self organization and models - a conceptual approach. Cells Tissues Organs, 171 (1) (2002), 8–26. [CrossRef] [PubMed]
  191. M. Loeffler, I. Roeder. Conceptual models to understand tissue stem cell organization. Current Opinion in Hematology, 11, (2004), 81–87 . [CrossRef] [PubMed]
  192. M. Loeffler, A. D. Tsodikov, A. Y. U. Yakolev, A cure model with time-changing risk factor: An application to the analysis of secondary leukemia. Statistics in Medicine, 17 (1998), 27–40. [CrossRef] [PubMed]
  193. M.C. Mackey. Mathematical models of hematopoietic cell replication and control, pp. 149-178 in The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids (H.G. Othmer, F.R. Adler, M.A. Lewis, and J.C. Dallon eds.) Prentice Hall, 1997.
  194. M.C. Mackey. Cell kinetic status of hematopoietic stem cells. Cell Prolif., 34, (2001), 71–83. [CrossRef] [PubMed]
  195. M.C. Mackey, U. an der Heiden. Dynamic diseases and bifurcations in physiological control systems, Funk. Biol. Med., 1 (1982), 156–164.
  196. M. C. Mackey, A.A.G. Aprikyan, D.C. Dale. The rate of apoptosis in post mitotic neutrophil precursors of normal and neutropenic humans. Cell Prolif., 36 (2003), 27–34. [CrossRef] [PubMed]
  197. M.C. Mackey, P. Dörmer. Enigmatic hemopoiesis, in Biomathematics and Cell Kinetics (ed. M. Rotenberg), Elsevier/North Holland, (1981), 87–103.
  198. M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems. Science, 197 (1977), 287–289. [CrossRef] [PubMed]
  199. M.C. Mackey, P. Dörmer, Continuous maturation of proliferating erythroid precursors. Cell and Tissue Kinetics, 15, (1982), 381–392. [PubMed]
  200. M.C. Mackey, J. Milton. Feedback, delays, and the origins of blood cell dynamics. Comm. on Theor. Biol., 1 (1990), 299–327.
  201. M.C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu. Periodic oscillations of blood cell populations in chronic myelogenous leukemia. SIAM J. Math. Anal., 38(1), (2006), 166–187. [CrossRef] [MathSciNet]
  202. M.C. Mackey, R. Rudnicki. Global stability in a delayed partial differential equation describing cellular replication. J. Math. Biol., 33 (1994), 89–109. [CrossRef] [MathSciNet] [PubMed]
  203. M.C. Mackey, R. Rudnicki. A new criterion for the global stability of simultaneous cell replication and maturation processes. J. Math. Biol., 38 (1999), 195–219. [CrossRef]
  204. J.M. Mahaffy, J. Bélair, M.C. Mackey. Hematopoietic model with moving boundary condition and state dependent delay. J. Theor. Biol., 190, (1998), 135–146. [CrossRef] [PubMed]
  205. A. Marciniak-Czochra, A. D. Ho, W. Jäger T. Stiehl, W. Wagner. Modeling of asymmetric cell division in hematopoietic stem cells–regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev., 18(3) (2009), 377–85. doi: 10.1089/scd.2008.0143. [CrossRef] [PubMed]
  206. A. Marciniak-Czochra, T. Stiehl, W. Wagner. Modeling of replicative senescence in hematopoietic development. Aging (Albany NY), 1 (8) (2009), 723–732. [CrossRef] [PubMed]
  207. A. Marciniak-Czochra, T. Stiehl. Mathematical models of hematopoietic reconstitution after stem cell transplantation Model Based Parameter Estimation. Bock, H.G., Carraro, T., äger, W., Körkel, S., Rannacher, R., Schlöder, J.P., (Eds.) Contributions in Mathematical and Computational Sciences, Vol. 3, Springer Verlag, (2013), 191–206.
  208. A. Maximow. The Lymphocyte as a stem cell common to different blood elements in embryonic development and during the post-fetal life of mammals. Originally in German: Folia Haematologica 8. (1909), 125–134. (English translation: Cell Ther. Transplant.(2009), 1:e.000032.01. doi:10.3205/ctt-2009-en-000032.01).
  209. D. Metcalf. The granulocyte-macrophage colony-stimulating factors. Science, (1985), 229(4708): 16–22. doi:10.1126/science.2990035, PMID 2990035. [CrossRef] [PubMed]
  210. J. A. J. Metz, O. Diekmann, editors. The dynamics of physiologically structured populations, volume 68 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1986. Papers from the colloquium held in Amsterdam, 1983.
  211. P. Michel. Optimal Proliferation Rate in a Cell Division Model. Math. Model. Nat. Phenom. Vol. 1, No. 2, (2006), 23–44. [CrossRef] [EDP Sciences]
  212. F. Michor. Quantitative approaches to analyzing imatinib-treated chronic myeloid leukemia. Trends in Pharmacological. Sciences, 28 (2007), 197–199.
  213. F. Michor. Chronic myeloid leukemia blast crisis arises from progenitors. Stem Cells, 25 (2007), 1114–1118. [CrossRef] [PubMed]
  214. F. Michor. The long-term response to imatinib treatment of CML. British Journal of Cancer, 96 (2007), 679–680. [CrossRef]
  215. F. Michor, T. P. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C. L Sawyers, M. A. Nowak Dynamics of chronic myeloid leukemia. Nature, 435 (2005), 1267–1270. [CrossRef] [PubMed]
  216. F. Michor, Y. Iwasa, M. A. Nowak. The age incidence of chronic myeloid leukemia can be explained by a one-mutation model. Proc. Natl. Acad. Sci. U S A (2006) 103, 14931–14934. [CrossRef] [PubMed]
  217. J. Milton, M.C. Mackey. Periodic haematological diseases: Mystical entities or dynamical disorders?, J. Roy. Coll. Phys. (Lond) 23 (1989), 236–241.
  218. C. L. Mouser, E. S. Antoniou, J. Tadros, E. K. Vassiliou, A model of hematopoietic stem cell proliferation under the influence of a chemotherapeutic agent in combination with a hematopoietic inducing agent. Theoretical Biology and Medical Modelling (2014) 11:4 DOI: 10.1186/1742-4682-11-4. [CrossRef]
  219. T. Niederberger, H. Failmezger, D. Uskat, D. Poron, I. Glauche, N. Scherf, I. Roeder, T. Schroeder, A. Tresch. Factor graph analysis of live cell imaging data reveals mechanisms of cell fate decisions. Bioinformatics (Oxford, England) (2015).
  220. W. Nijhof, H. Goris, B. Dontje, J. Dresz, M. Loeffler. Quantification of the cell kinetic effects of G-CSF using a model of human granulopoiesis, Experimental Hematology 21 (1993), 496–501. [PubMed]
  221. G. C. Nooney. Iron kinetics and erythron development. Biophysical Journal, vol. 5, (1965), 755–765. [CrossRef] [PubMed]
  222. I. Østby, L. S. Rusten, G. Kvalheim, P. Grøttum. A mathematical model for reconstitution of granulopoiesis after high dose chemotherapy with autologous stem cell transplantation. J. Math. Biol., 47(2) (2003), 101–36. [CrossRef] [MathSciNet] [PubMed]
  223. I. Østby, R. Winther. Stability of a model of human granulopoiesis using continuous maturation. J. Math. Biol., 49(5) (2004), 501–36. [CrossRef] [MathSciNet] [PubMed]
  224. H. Özbay, C. Bonnet, H. Benjelloun, J. Clairambault. Stability analysis of cell dynamics in leukemia. Mathematical Modelling of Natural Phenomena, 7(1) (2012), 203–234. [CrossRef] [EDP Sciences]
  225. K. Pantel, M. Loeffler, B. Bungart, H. E. Wichmann, A mathematical model of erythropoiesis in mice and rats. Part 4. Differences between bone marrow and spleen, Cell Tissue Kinet. 23 (1990), 283–297. [PubMed]
  226. J. F. Perez, C. P. Malta, C. P., F. A. B. Coutinho. Qualitative analysis of oscillations in isolated populations of flies. J. Theoret. Biol., 71 (1978), 505–514. [CrossRef] [MathSciNet]
  227. J. Pimentel. Agent Based Model for the Production Mechanism and Control of Blood Cells in the Human Body. Proceedings of The National Conference On Undergraduate Research (NCUR), The University of North Carolina at Asheville, North Carolina, 2006.
  228. A. Plesa, G. Ciuperca V. Louvet, L. Pujo-Menjouet, S. Génieys, C. Dumontet, X. Thomas, V. Volpert. Diagnostics of the AML with immunophenotypical data. Math. Model. Nat. Phenom. Vol. 1, No. 2, (2006), 104–123. [CrossRef] [EDP Sciences]
  229. G. Prindull, B. Prindull, N. Meulen. Haematopoietic stem cells (CFUc) in human cord blood. Acta Paediatr Scand. 67(4) (1978), 413–6. [CrossRef] [PubMed]
  230. L. Pujo-Menjouet, M. C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. Comptes Rendus Biologiques (2004), 327, 235–244. [CrossRef] [PubMed]
  231. L. Pujo-Menjouet, S. Bernard, M.C. Mackey. Long period oscillations in a G0 model of hematopoietic stem cells. SIAM J. Appl. Dyn. Sys., (2005), 4:312–332. [CrossRef]
  232. H. Quastler. The analysis of cell population kinetics. Cell Proliferation, Ed. by L. T. Lanierton and R. J . M. Fry, p. 18. Blackwell Scientific Publications, Oxford (1963), 18–34.
  233. H. Quastler, F. G. Sherman. Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res., Jun; 17(3) (1959), 420–438. [CrossRef] [PubMed]
  234. N. M. Rashidi, M. K. Scott, N. Scherf, A. Krinner, J. S. Kalchschmidt, K. Gounaris, M.E. Selkirk, I. Roeder, C. Lo Celso. In vivo time-lapse imaging of mouse bone marrow reveals differential niche engagement by quiescent and naturally activated hematopoietic stem cells. Blood, 124(1) (2014), 79–83. [CrossRef] [PubMed]
  235. U. Reincke, M. Loeffler, H. E. Wichmann, B. Harrisson. The kinetics of granulopoiesis in long term mouse bone marrow culture. Part I. Int.J.Cell Cloning, 2 (1984), 394–407. [CrossRef]
  236. C. Roberts, L. Kean, D. Archer, C. Balkan, L. L. Hsu. Murine and math models for the level of stable mixed chimerism to cure beta-thalassemia by nonmyeloablative bone marrow transplantation. Ann. N.Y. Acad. Sci. 1054 (2005), 423–8. [CrossRef]
  237. I. Roeder. Quantitative stem cell biology - Computational studies in the hematopoietic system. Curr. Opin. Hematol., 13 (4) (2006), 222–228. [CrossRef] [PubMed]
  238. I. Roeder, K. Braesel, R. Lorenz, M. Loeffler. Stem cell fate analysis revisited: interpretation of individual clone dynamics in the light of a new paradigm of stem cell organization. Journal of biomedicine, biotechnology, (2007), 84656.
  239. I. Roeder, G. de Haan, C. Engel, W. Nijhof, B. Dontje, M. Loeffler. Interactions of Erythropoietin, Granulocyte Colony-Stimulating Factor, Stem Cell Factor, and Interleukin-11 on Murine Hematopoiesis During Simultaneous Administration, Blood, 91 9 (1998), 3222–3229. [PubMed]
  240. I. Roeder I, M. d’Inverno. New experimental and theoretical investigations of hematopoietic stem cells and chronic myeloid leukemia. Blood cells, molecules and diseases 43 (2009), 88–97. [CrossRef]
  241. I. Roeder, J. Galle, M. Loeffler. Theoretical concepts of tissue stem cell organization. Tissue Stem Cells, Edited by Christopher S . Potten, Robert B . Clarke, James Wilson, Andrew G . Renehan CRC Press (2006), 17–35.
  242. I. Roeder and I. Glauche. Towards an understanding of lineage specification in hematopoietic stem cells: A mathematical model for the interaction of transcription factors GATA-1 and PU.1. J. Theor. Biol., 241 4 (2006), 852–865. [CrossRef] [PubMed]
  243. I. Roeder, I. Glauche. Towards an understanding of lineage specification in hematopoietic stem cells: a mathematical model for the interaction of transcription factors GATA-1 and PU.1. Journal of theoretical biology, 241 (2006), 852–65. [CrossRef] [PubMed]
  244. I. Roeder, I. Glauche Pathogenesis, treatment effects, and resistance dynamics in chronic myeloid leukemia–insights from mathematical model analyses. Journal of molecular medicine (Berlin Germany), 86 (2008), 17–27. [CrossRef]
  245. I. Roeder, M. Herberg, M. Horn. An “age”-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia. Bulletin of mathematical biology, 71 (2009), 602–26. [CrossRef] [MathSciNet] [PubMed]
  246. I. Roeder, M. Kamminga, K. Braesel, B. Dontje, G. de Haan, M. Loeffler. Competitive clonal hematopoiesis in mouse chimeras explained by a stochastic model of stem cell organization. Blood, 15 2 (2005), 609–616. [CrossRef]
  247. I. Roeder, M. Horn, I. Glauche, A. Hochhaus, M. C. Mueller, M. Loeffler. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nature medicine, 12 (2006), 1181–4. [CrossRef] [PubMed]
  248. I. Roeder, K. Horn, H. B. Sieburg, R. Cho, C. Muller-Sieburg, M. Loeffler. Characterization and quantification of clonal heterogeneity among hematopoietic stem cells: a model-based approach. Blood, 112 (2008), 4874–83 [CrossRef] [PubMed]
  249. I. Roeder, M. Loeffler. A Novel Dynamic Model of Hematopoietic Stem Cell Organization Based on the Concept of Within-Tissue Plasticity. Experimental Hematology, 30 (8) (2002), 853–861. [CrossRef] [PubMed]
  250. I. Roeder, M. Loeffler, P. J. Quesenberry, G. A. Colvin, J. F. Lambert. Quantitative tissue stem cell modeling. Blood, 102 (3) (2003), 1143–1144. [CrossRef]
  251. I. Roeder, R. Lorenz. Asymmetry of stem cell fate and the potential impact of the niche: observations, simulations, and interpretations. Stem cell reviews 2 (2006), 171–80. [CrossRef] [PubMed]
  252. S. I. Rubinow. A Maturity-Time Representation for Cell Populations. Biophys J., Oct; 8(10) (1968), 1055–1073. doi: 10.1016/S0006-3495(68)86539-7 [CrossRef] [PubMed]
  253. S. I. Rubinow, J. L. Lebowitz. A mathematical model of neutrophil production and control in normal man. J. Math. Biol., 1 (1975), 187–225. [CrossRef] [PubMed]
  254. R. Rudnicki. Global stability of a nonlinear model of cellular populations, J. Tech. Phys., 38 (1997), 333–336.
  255. R. Rudnicki. Chaoticity of the blood cell production system. Chaos, 19(4) (2009), 043112. doi: 10.1063/1.3258364. [CrossRef] [MathSciNet] [PubMed]
  256. R. Rudnicki, K. Pichór. Asymptotic behaviour of Markov semigroups and applications to transport equations, Bull. Polish Acad. Sci. Math., 45 (1997), 379–397. [MathSciNet]
  257. A. Safarishahrbijari, A. Gaffari. Parameter identification of hematopoiesis mathematical model – periodic chronic myelogenous leukemia. Wspolczesna Onkol, 17 (1) (2013), 73–77, DOI: 10.5114/wo.2013.33778. [CrossRef]
  258. E. Sánchez, O. Arino, M. Kimmel. Noncompact semigroups of operators generated by cell kinetics models, Differential Integral Equations, 4 (6) (1991), 1233–1249. [MathSciNet]
  259. M. Santillan, J.M. Mahaffy, J. Bélair, M.C. Mackey. Regulation of platelet production: The normal response to perturbation and cyclical platelet disease. J. theor. Biol., 206, (2000), 585–603. [CrossRef] [PubMed]
  260. S. Scheding, M. Loeffler, V. Anselsetter, H. E. Wichmann. A mathematical approach to benzo[a]pyrene-induced hematotoxicity, Arch Toxicology, 66 (1992), 546–550. [CrossRef]
  261. S. Schirm, C. Engel, M. Loeffler, M. Scholz. A biomathematical model of human erythropoiesis under erythropoietin and chemotherapy administration. PLOS ONE, Vol. 8 (6), (2013), e65630. [CrossRef] [PubMed]
  262. S. Schirm, C. Engel, M. Loeffler, M. Scholz. A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment. Theoretical Biology and Medical Modelling, 11, (2014), 24. [CrossRef]
  263. S.Schirm, C. Engel, M. Loeffler, M. Scholz. Modelling chemotherapy effects on granulopoiesis. BMC Syst Biol., (2014) 8(1), 138. [CrossRef]
  264. S. Schmitz, M. Loeffler, J. B. Jones, R. D. Lange, H. E. Wichmann. Synchrony of marrow maturation as origin of cyclic hemopoiesis, Cell Tissue Kinet., 23 (1990), 425–441. [PubMed]
  265. S. Schmitz, H. Franke, M. Loeffler, H. E. Wichmann, V. Diehl. Reduced variance of bone-marrow transit time of granulopoiesis - a possible pathomechanism of human cyclic neutropenia. Cell Prolif., 27 (1994), 655–667. [CrossRef]
  266. S. Schmitz, H. Franke, M. Loeffler, H. E. Wichmann, V. Diehl. Model analysis of the contrasting effects of GM-CSF and G-CSF treatment on peripheral blood neutrophils observed in three patients with childhood-onset cyclic neutropenia. British Journal of Hematology, 95 4 (1996), 616–625. [CrossRef]
  267. M. Scholz, C. Engel, M. Loeffler. Modelling Human Granulopoiesis under Polychemotherapy with G-CSF Support. Journal of Mathematical Biology, 10.1007 (2004), 285–295.
  268. M. Scholz, C. Engel, M. Loeffler. Model-based design of chemotherapeutic regimens that account for heterogeneity in leucopoenia. British Journal of Haematology, 132 (2006), 723–735. [CrossRef] [PubMed]
  269. M. Scholz, A. Gross, M. Loeffler. A biomathematical model of human thrombopoiesis under chemotherapy. Journal of Theoretical Biology, Vol. 264 (2), (2010), 287–300. [CrossRef] [PubMed]
  270. H. Schwegler, M.C. Mackey. Fluctuations in circulating cell numbers following chemotherapy or bone marrow transplant, J. Math. Biol., 32 (1994), 761–770. [CrossRef] [PubMed]
  271. L. Sharney, L. R. Wasserman, L. Schwartz, D. Tendler. Multiple pool analysis as applied to erythro-kinetics. Ann. N. Y. Acad. Sci., 10 108 (1963), 230–49.
  272. E. Shochat, V. Rom-Kedar, L. A. Segel. G-CSF control of neutrophils dynamics in the blood. Bull Math Biol., 69(7) (2007), 2299–338. [CrossRef] [MathSciNet] [PubMed]
  273. J. A. Smith, L. Martin. Do cells cycle?, Proc. Natl. Acad. Sci. USA, 70 (1973), 1263–1267. [CrossRef] [PubMed]
  274. T. Stiehl, N. Baran, A. D. Ho, A. Marciniak-Czochra. Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. Journal of The Royal Society Interface, 11 (2014) (94), 20140079. [CrossRef]
  275. T. Stiehl, N. Baran, A. D. Ho, A. Marciniak-Czochra. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer research, 75 (6), (2015), 940–949. [CrossRef] [PubMed]
  276. T. Stiehl, A. Marciniak-Czochra. Characterization of stem cells using mathematical models of multistage cell lineages. Mathematical and Computer Modelling, 53 (7), (2011), 1505–1517. [CrossRef]
  277. T. Stiehl, A. Marciniak-Czochra. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Mathematical Modelling of Natural Phenomena, 7 (01) (2012), 166–202. [CrossRef] [EDP Sciences]
  278. A. Świerniak, J. Klamka. Local Controllability of Models of Combined Anticancer Therapy with Delays in Control. Math. Model. Nat. Phenom. (2014) Vol. 9, No. 4, 216–226. DOI: 10.1051/mmnp/20149413. [CrossRef] [EDP Sciences]
  279. J. Swinburne, M.C. Mackey. Cyclical thrombocytopenia: Characterization by spectral analysis and a review. J. Theor. Med. (2000), 2, 81–91. [CrossRef]
  280. H. Talibi Alaoui, R. Yafia. Stability and Hopf bifurcation in an approachable haematopoietic stem cells model. Math Biosci. (2007) 206(2), 176–84. [CrossRef] [MathSciNet] [PubMed]
  281. T. Tian, K. Smith-Miles. Mathematical modeling of GATA-switching for regulating the differentiation of hematopoietic stem cell. BMC Systems Biology (2014), 8(Suppl 1):S8 http://www.biomedcentral.com/1752-0509/8/S1/S8. [CrossRef]
  282. J. E. Till, E. A. McCulloch, L. Siminovitch. A Stochastic Model of Stem Cell Proliferation, Based on the Growth of Spleen Colony-Forming Cells. Proceedings of the National Academy of Sciences of the United States of America, (1964), 15, Vol. 51, No. 1, 29–36.
  283. A. D. Tsodikov, D. Hasenclever, M. Loeffler. Regression with bounted outcome score: Evaluation of power by bootstrap and simulation in a chronic myelogenous leukemia clinical trial, Statistics in Medicine 17 (1998), 1909–1922. [CrossRef] [PubMed]
  284. V. Vainstein, Y. Ginosar, M. Shoham, A. Ianovski A. Rabinovich, Y. Kogan, V. Selitser, Z. Agur. Improving Cancer Therapy by Doxorubicin and Granulocyte Colony-Stimulating Factor: Insights from a Computerized Model of Human Granulopoiesis. Math. Model. Nat. Phenom. (2006), Vol. 1, No. 2, 70–80. [CrossRef] [EDP Sciences]
  285. H. von Foerster. (1959), Some remarks on changing populations. F. Stohlman, ed., The kinetics of cell proliferation, Grune and Stratton, New York, 1959), 382–407.
  286. G. F. Webb. Theory of nonlinear age-dependent population dynamics, volume 89 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1985.
  287. G. F. Webb. An operator-theoretic formulation of asynchronous exponential growth. Trans. Amer. Math. Soc., (1987) 303(2) 751–763. [CrossRef] [MathSciNet]
  288. G. F. Webb. Semigroup methods in populations dynamics: Proliferating cell populations, Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics Series, Vol. 116, Marcel Dekker, New York, 1989, 441–449.
  289. G. F. Webb. Asynchronous exponential growth in differential equations with homogeneous nonlinearities, Differential Equations in Banach Spaces, Lecture Notes in Pure and Applied Mathematics Series, Vol. 148, Marcel Dekker, New York, (1993), 225–233.
  290. G. F. Webb. Asynchronous exponential growth in differential equations with asymptotically homogeneous nonlinearities, Adv. Math. Sci. Appl., Vol. 3 (1994), 43–55.
  291. G. F. Webb. Periodic and chaotic behavior in structured models of cell population dynamics, Recent Developments in Evolution Equations, Pitman Res. Notes Math. Series. 324 (1995), 40–49.
  292. G. F. Webb. Structured population dynamics, Banach Center Publications, Polish Academy of Sciences Institute of Mathematics, Mathematical Modelling of Population Dynamics, Vol. 63 (2004), 123-163.
  293. G. F. Webb. Population models structured by age, size, and spatial position, in Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, Vol. 1936, Springer-Verlag, Berlin-New York (2008), 1–49.
  294. Z. L. Whichard, C. A. Sarkar, M. Kimmel, S. J. Corey. Hematopoiesis and its disorders: a systems biology approach. Blood (2010) 115: 2339-2347 doi:10.1182/blood-2009-08-215798. [CrossRef] [PubMed]
  295. H. E. Wichmann, M. Loeffler, Probability of self-renewal: Assumptions and limitations. A commentary. Blood Cells, 9, (1983), 475–483.
  296. H. E. Wichmann, M. Loeffler, U. Reincke, The kinetics of granulopoiesis in long term mouse bone marrow culture. Part II. Int.J.Cell Cloning, 2 (1984), 408–424. [CrossRef]
  297. H. E. Wichmann, M. Loeffler, S. Schmitz, A concept of hemopoietic regulation and its biomathematical realisation. Blood Cells, 14 (1988), 411–429. [PubMed]
  298. H. E. Wichmann, M. Loeffler, K. Pantel, H. Wulff, A mathematical model of erythropoiesis in mice and rats. Part 2. Stimulated erythropoiesis. Cell Tissue Kinet., 22, (1989), 31–49. [PubMed]
  299. O. Wolkenhauer, C. Auffray, O. Brass, J. Clairambault, A. Deutsch, D. Drasdo, F. Gervasio, L. Preziosi, P. Maini, A. Marciniak-Czochra, C. Kossow, L. Kuepfer, K. Rateitschak, I. Ramis-Conde, B. Ribba, A. Schuppert, R.Smallwood, G. Stamatakos, F. Winter, H. Byrne. Enabling multiscale modeling in systems medicine. Genome Med (2014) 6, 3 pages.
  300. H. Wulff, H. E. Wichmann, M. Loeffler, K. Pantel, A mathematical model of erythropoiesis in mice and rats. Part 3. Suppressed erythropoiesis. Cell Tissue Kinet., 22 (1989), 51–61. [PubMed]
  301. C. Zhuge, J. Lei, M.C. Mackey. Neutrophil dynamics in response to chemotherapy and G-CSF. J. Theor. Biol. (2012) 293, 111–120. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.