Math. Model. Nat. Phenom.
Volume 15, 2020
Coronavirus: Scientific insights and societal aspects
Article Number 33
Number of page(s) 13
Published online 28 May 2020
  1. A. Akgül, S.H.A. Khoshnaw and W.H. Mohammed, Mathematical Model for the Ebola Virus Disease. J. Adv. Phys. 7 (2018) 190–198. [CrossRef] [Google Scholar]
  2. A.C. Babtie, P. Kirk and M.P.H. Stumpf, Topological sensitivity analysis for systems biology. Proc. Natl. Acad. Sci. 111 (2014) 18507–18512. [CrossRef] [Google Scholar]
  3. T.-M. Chen, J. Rui, Q.-P. Wang, Z.-Y. Zhao, J.-A. Cui and L. Yin, A mathematical model for simulating the phase–based transmissibility of a novel coronavirus. Infect. Dis. Poverty 9 (2020) 1–8. [CrossRef] [Google Scholar]
  4. S. He, S. Tang and L. Rong, A discrete stochastic model of the COVID–19 outbreak: Forecast and control. Math. Biosci. Eng. 17 (2020) 13. [Google Scholar]
  5. M.A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. To appear in: Alex. Eng. J. (2020). [Google Scholar]
  6. S.H.A. Khoshnaw, Model reductions in biochemical reaction networks. Ph.D. thesis, University Leicester-UK (2015). [Google Scholar]
  7. S.H.A. Khoshnaw, A mathematical modelling approach for childhood vaccination with some computational simulations. AIP Conf. Proc. 2096 (2019) 020022. [Google Scholar]
  8. S.H.A. Khoshnaw, N.A. Mohammad and R.H. Salih, Identifying critical parameters in SIR model for spread of disease. Open J. Model. Simul. 5 (2017) 32–46. [CrossRef] [Google Scholar]
  9. A. Kiparissides, S.S. Kucherenko, A. Mantalaris and E.N. Pistikopoulos, Global sensitivity analysis challenges in biological systems modeling. Ind. Eng. Chem. Res. 48 (2009) 7168–7180. [Google Scholar]
  10. A.J. Kucharski, T.W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk and J.D. Munday, Early dynamics of transmission and control of COVID–19: a mathematical modelling study. Lancet Infect. Dis. 20 (2020) 553. [Google Scholar]
  11. M.Y. Li, J.R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160 (1999) 191–213. [Google Scholar]
  12. L. Li, T. Huang, Y. Wang, Z. Wang, Y. Liang, T. Huang and Y. Wang, 2019 novel coronavirus patients’ clinical characteristics, dischargerate and fatality rate of meta–analysis. J. Med. Virol. 96 (2020) 577–583. [Google Scholar]
  13. D.R. Powell, J. Fair, R.J. LeClaire, L.M. Moore and D. Thompson, Sensitivity analysis of an infectious disease model, in Proceedings of the International System Dynamics Conference (2005). [Google Scholar]
  14. H. Rabitz, M. Kramer and D. Dacol, Sensitivity analysis in chemical kinetics. Ann. Rev. Phys. Chem. 34 (1983) 419–461. [CrossRef] [Google Scholar]
  15. B. Tang, X. Wang, Q. Li, N.L. Bragazzi, S. Tang, Y. Xiao and J. Wu, Estimation of the transmission risk of the 2019–nCoV and its implication for public health interventions. J. Clin. Med. 9 (2020) 462. [Google Scholar]
  16. B. Tang, N.L. Bragazzi, Q. Li, S. Tang, Y. Xiao and J. Wu, An updated estimation of the risk of transmission of the novel coronavirus (2019–nCov). Infect. Dis. Model. 5 (2020) 248–255. [PubMed] [Google Scholar]
  17. V. Volpert, M. Banerjee and S. Petrovskii, On a quarantine model of coronavirus infection and data analysis. MMNP 15 (2020) 24. [EDP Sciences] [Google Scholar]
  18. WHO, Novel coronavirus (COVID–19) situation. Available from (2020). [Google Scholar]
  19. Z. Zi, Sensitivity analysis approaches applied to systems biology models. IET Syst. Biol. 5 (2011) 336–346. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.